CNS-ATM Task17

[image: image60.png]‘ ITT Industries

Engineered for life

TR04008

February 9, 2004

System-Wide Information Management (SWIM) Architecture and Requirements

CNS-ATM TASK 17C

Physical Architecture Development

PREPARED FOR:

FEDERAL AVIATION ADMINISTRATION

ASD-120

800 INDEPENDENCE AVENUE, S.W.

WASHINGTON, DC 20591

PREPARED BY:

ITT INDUSTRIES

ADVANCED ENGINEERING AND SCIENCES DIVISION

1761 BUSINESS CENTER DRIVE

RESTON, VIRGINIA 20190-5337

[image: image61.png]Inp D g Process SEM Availability
Reference
Requirements Baseline _| Requirements Management | Section 4.3 | 1st and subseduent loops
Functional Architecture | Functional Analysis Section 44| 1st and subsequent loops
Tegacy System External to SE NA
Specifications 1st and subsequent loops
Legacy Interface Tnterface Management Section 4.7
Requirements 1st and subsequent loops
Draft IPP Tntegrated Technical Planning | Section 4.2_| 1st Synthesis loop
Operafional Services | Functional Analysis Section 4.4
and Environment
Description 1st and subsequent loops
Preliminary WBS Tntegrated Technical Planning | Section 4.2_| 1st Synthesis loop
External to SE NA iay not be available Tst
Market Research loop through Synthesis
Trade Study Report Trade Studies Section 46 | May not be available 1st
loop through Synthesis
iay not be available Tst
Risk Mitigation Plans | Risk Management Section 4.8 | loop through Synthesis

Advanced Engineering & Sciences, a division of ITT Industries (ITT-AES)

1761 Business Center Drive, Reston, Virginia 20190-5337

table of contents

SECTION
PAGE
1-11.
Introduction

1-11.1.1
Background

1-21.1.2
Pre-SWIM Communications Architecture Activities

1-21.1.3
SWIM Development Background

1-31.1.4
Other SWIM Development Related Activities

1-31.2
Overview of Task 17

1-71.3
Objectives of SubTask 17C

1-71.4
Document Organization

1-81.5
Applicable Documents

2-12.
Subtask 17C Methodology

2-12.1
Introduction

2-12.2
Subtask 17C Workflow

3-13.
Defining the Physical Architecture Framework

3-13.1
SWIM Physical Architecture Development Inputs

3-23.1.1
Overview of Analysis Inputs

3-33.1.2
Functional Architecture Concepts

3-103.2
Defining the Design Solution Plan

3-113.3
Developing the SWIM Physical Architecture Framework

3-113.3.1
SWIM Enabling Technologies

3-143.3.2
Identifying SWIM Components

3-293.3.3
SWIM Interface and Performance Characteristics

3-333.3.4
Allocation of SWIM Functions/Requirements to Components and Interfaces

3-343.3.5
Identification of Design Tradeoffs

4-14.
Physical Architecture Design Tradeoffs

4-14.1
Introduction

4-34.2
SWIM Data Representation and Management

4-44.2.1
Elements of SWIM Data Representation and Management

4-124.2.2
SWIM Data Concept Design Issues

4-164.2.3
Data Concept and Issues Summary

4-164.3
SWIM Member Access Options

4-184.4
SWIM Process Patterns

4-184.4.1
Introduction

4-214.4.2
Non-Stream Data to Broker Scenario: Case 1-A

4-224.4.3
Stream Data to Broker Scenario: Case 2-A

4-234.4.4
Non-Stream Data without Broker Scenario: Case 1-B

4-234.4.5
Stream Data without Broker Scenario: Case 2-B

4-244.4.6
Non-Stream Data to VC Broker Scenario: Case 1-C

4-254.4.7
Stream Data to VC Broker Scenario: Case 2-C

4-284.4.8
Summary of SWIM Processing Option Design Decisions

4-284.5
Distribution of Broker Domains (Topology)

4-294.5.1
Broker Connection Topology

4-304.5.2
Inter-broker Communications

4-324.5.3
SWIM Broker Topology Design Decisions

4-364.6
Data Granularity Options

4-414.7
Data Storage Issues

4-434.8
Network Management Alternatives

4-454.9
SWIM Security Discussion

4-454.9.1
Need for Information System Security

4-464.9.2
Security Goals

4-474.9.3
Threats to SWIM Security

4-484.9.4
Countermeasures

4-554.9.5
SWIM Security Objectives

4-554.9.6
Security Requirements

4-554.10
Technology/Implementation Options

4-564.10.1
Multi-tiered SWIM Architecture

4-574.10.2
Technology Support

4-624.10.3
Summary of Implementation Options

5-15.
Physical Architecture Definitions and Comparisons

5-15.1
Physical Architecture Solution Space

5-35.1.1
Candidate “A” Architecture Description

5-45.1.2
Candidate “B” Architecture Description

5-65.1.3
Candidate “C” Architecture Description

5-75.2
Physical Architecture Comparisons

6-16.
Summary

1Appendix A.
Information Object Reference Material
A-

1A.1
Lifecycle of SWIM Information Objects
A-

2A.2
Information Object Representation – XML Overview
A-

4A.3
Geographical Index Reference
A-

1Appendix B.
Technology Reference
B-

1B.1
Distributed Computing Design Patterns
B-

1B.1.1.1
Shared memory pattern
B-

2B.1.2
Remote method call pattern
B-

2B.1.3
Observer pattern
B-

3B.1.4
Data Bus pattern
B-

3B.1.5
Proxy pattern
B-

4B.1.6
Broker pattern:
B-

4B.1.7
Comparison of Distributed Computing Architecture Patterns
B-

5B.2
Application Development Environment
B-

5B.2.1
J2EE
B-

6B.2.2
.NET
B-

7B.3
Distributed Middleware Technologies
B-

7B.3.1
Object Request Broker Based Middleware
B-

7B.3.1.1
OMG CORBA
B-

8B.3.1.2
RMI
B-

9B.3.1.3
DCOM
B-

9B.3.1.4
Enterprise JaveBean (EJB)
B-

10B.3.2
RPC-based Middleware
B-

10B.3.2.1
SUN ONC
B-

10B.3.2.2
OSF DCE
B-

10B.3.3
Message-Based Middleware
B-

10B.3.3.1
IBM MQSeries
B-

11B.3.3.2
Sun ToolTalk
B-

1Appendix C.
Security Information Tables
C-

1C.1
Threat Tables
C-

5C.2
SWIM Security Policies
C-

15C.3
Security Technologies for Specific Information Dimension
C-

20C.4
Security Objectives
C-

1Appendix D.
NAS Sensors and Systems
D-

1Appendix E.
Terms and Concepts Used in the Report
E-

1Appendix F.
List of Abbreviations and Acronyms
F-

LIST OF FIGURES

FIGURES
PAGE
1-11‑1
ITT/ASD-100 Communications Architecture Development

1-41‑2
NAS System Engineering Process

1-51‑3
Requirements and Architecture Definition

1-61‑4
The Synthesis Process Activities

2-12‑1
Task 17C Detailed Work Flow

3-53‑1
Logical Multi-Tiered Architecture

3-73‑2
Logical View of SWIM and User Interfaces

3-93‑3
Mapping Functional Architectures

3-103‑4
1st and 2nd Level SWIM Functional Decomposition

3-193‑5
Task 15 SWIM High Level Publish/Subscribe Physical Architecture

3-203‑6
Task 15 SWIM Architecture Concept Development

3-243‑7
Function Allocation Process

3-253‑8
SWIM Information Management Component Architecture Block Diagram

3-273‑9
SWIM Information Management Component Schematic Diagram (High-Level)

3-283‑10
SWIM Network Management Component Architecture Block Diagram

3-293‑11
SWIM Network Management Component Schematic Diagram (High-Level)

4-24‑1
SWIM Architecture Design Issues

4-24‑2
SWIM Design Topic Dependence and Order of Resolution

4-54‑3
Example of a SWIM information Object Based on a Common Data Model

4-74‑4
Sample Base Object Structure for SWIM

4-84‑5
Expansion of the Structured Attribute ‘ActivePublishTime’

4-84‑6
Sample Information Object: ‘FlightMessage’ Core Information

4-94‑7
Flight Plan Component of FlightMessage

4-114‑8
Flight Message Data Structure Example

4-174‑9
SWIM Member Access Options

4-214‑10
SWIM Processing Case 1-A: Non-Stream Data to Broker Scenario

4-224‑11
Processing Case 2-A: Stream Data to Broker Scenario

4-234‑12
Processing Case 1-B: Non-Stream Data without Broker Scenario

4-244‑13
Processing Case 2-B

4-254‑14
Case 1-C: Non-Stream Data to VC Broker Scenario

4-264‑15
Processing Case 2-C: Stream Data to VC Broker Scenario

4-274‑16
SWIM Process Scenarios

4-274‑17
VC Broker SWIM Process Scenarios

4-284‑18
“Without Broker” SWIM process Scenarios

4-294‑19
Broker Topology Choices

4-324‑20
Autonomic Computing Components and Broker Topology

4-324‑21
Three General Levels of Broker Distribution for the NAS

4-374‑22
Data Granularity Alternatives

4-384‑23
Data Granularity Options

4-444‑24
SNMP-based Network Management

4-444‑25
CORBA-based Network Management

4-534‑26
Security Technologies per Zone

4-564‑27
Three-Tiered SWIM Software Hierarchy

5-15‑1
Design Options That Affect Architecture Alternatives

5-35‑2
Candidate “A” Broker Domain Block Diagram

5-45‑3
Candidate “A” Broker Distribution

5-55‑4
Candidate “B” Broker Domain Block Diagram

5-55‑5
Candidate “B” Broker Distribution

5-65‑6
Candidate “C” Broker Domain Block Diagram

5-75‑7
Candidate “C” Broker Distribution

6-26‑1
Schematic Diagram for SWIM Information Components

6-26‑2
Schematic Diagram for SWIM Network Components

6-36‑3
SWIM Physical Architecture Design Issues

6-46‑4
SWIM Design Topic Inter-relationships and Decision Making Orders

6-16‑5
Candidate Physical Architectures for SWIM

1A- 1
Lifecycle of an Information Object
A-

LIST OF TABLES

TABLES
PAGE
2-22‑1
Methodology for Subtask 17C Analysis Steps

3-13‑1
Needed Synthesis Data

3-63‑2
Mapping High-Level SWIM Functions to RM-ODP Information Services

3-123‑3
Identification of Technologies Applicable to SWIM Functions

3-153‑4
Task 15 Candidate SWIM Architecture Concepts

3-173‑5
Comparison of Information Sharing Concepts with Required SWIM
Functionality

3-233‑6
Candidate SWIM Components

3-243‑7
Functional Partitioning: SWIM Information Management Functions to

Components

3-323‑8
Sample NAS-Level Performance Requirements Applicable to SWIM

3-333‑9
SWIM Functionality Compliance Matrix

3-333‑10
NAS-level SWIM Requirements Compliance Matrix

3-353‑11
Summary of Investigated Design Trade-offs for SWIM

4-74‑1
Attributes of Sample SWIM Base Object

4-114‑2
SWIM Data Management Objectives

4-124‑3
SWIM Strategies/Mechanisms to Meet Data Management Objectives

4-164‑4
Summary of Data Concept Issues

4-174‑5
Comparison of SWIM Access Methods

4-184‑6
SWIM Member Interface Option Summary

4-184‑7
Primary SWIM Process Definitions

4-194‑8
SWIM Data Category

4-204‑9
SWIM Process Cases

4-214‑10
Case 1-A Steps and Advantages/Disadvantages

4-224‑11
Case 2-A Steps and Advantages/Disadvantages

4-234‑12
Case 1-B Steps and Advantages/Disadvantages

4-244‑13
Case 2-B Steps and Advantages/Disadvantages

4-254‑14
Case 1-C Steps and Advantages/Disadvantages

4-264‑15
Case 2-C Steps and Advantages/Disadvantages

4-284‑16
Summary of SWIM Process Options

4-334‑17
Relationship Between Number of Brokers and Interconnection Topology

4-344‑18
Characterizing SWIM Data by Service Domain

4-354‑19
Comparison of Broker Topology Designs

4-364‑20
Summary of the Topology Options

4-404‑21
Classification of Subscription Languages

4-414‑22
Summary of Data Granularity Options

4-414‑23
Summary of the Data Granularity Options

4-424‑24
Data Storage Issues - Advantages/Disadvantages and Related Issues

4-434‑25
Summary of Data Storage Option Decisions for SWIM

4-454‑26
Summary of Network Management Options

4-504‑27
STA Matrix: Security Mechanisms vs. Security Attributes

4-514‑28
STA Matrix – Security Phases

4-604‑29
Overview of Middleware Categories

4-604‑30
Middleware Pros/Cons and Product Examples

4-614‑31
A Comparison of Database Management Systems

4-624‑32
Summary of Implementation Options

5-25‑1
Three Candidate Architecture Alternatives Derived from Key Design
Tradeoffs

4B- 1
Distributed Architecture Pattern Comparison
B-

1C- 1
Derived Threats to SWIM Applications
C-

1C- 2
Derived Threats to SWIM Systems (Operational Environment Threats)
C-

3C- 3
Identified Threats to SWIM
C-

6C- 4
Derived SWIM Application Policies
C-

6C- 5
Derived SWIM System Policies (operational environment policies)
C-

8C- 6
Identified Policies for SWIM
C-

15C- 7
STA per Information Dimension
C-

16C- 8
Information Security Summary
C-

16C- 9
Security Technologies – What, When, and How
C-

20C- 10
SWIM Application Security Objectives
C-

21C- 11
SWIM System Objectives (Operational Environment)
C-

2D- 1
Surveillance Sensors/Systems
D-

3D- 2
Weather Sensors/Systems
D-

4D- 3
Flight Management Sensors/Systems
D-

8D- 4
Aeronautical Systems/Sensors
D-

9D- 5
Resource Management Systems/Sensors
D-

1. Introduction

1.1.1 Background

As the Federal Aviation Administration (FAA) strives to modernize the National Airspace System (NAS) and implement new services and features to meet the ever changing needs of the aviation community, a key underlying enabler of these efforts is improvements in the exchange of information. Information is used in the NAS to support a wide range of air traffic control activities including negotiating and tracking flight plans, tracking aircraft movement via surveillance, and sharing weather information with NAS service providers and users. An increase in the amount and quality of information provided to both service providers and users of the NAS is a key component of future NAS operating concepts that rely on a common situational awareness and provide an environment that can adapt dynamically to promote a safe and efficient use of the NAS.

Over the past few years, several efforts have analyzed the use and movement of information in the NAS. Some of these activities have focused on the modernization of communications that support the flow of NAS information. Others have aimed at capturing the various types and formats of information used in the NAS and developing procedures for defining a common and managed format for each unique type of information. During the past several years, ITT Industries Advanced Engineering and Sciences division (ITT-AES) has supported the FAA’s Office of System Architecture and Investment Analysis (ASD) in analyzing NAS communications requirements and developing communication systems architectures for the modernization of the NAS. These activities are depicted in the top part of Figure 1‑1.

[image: image1.wmf]2001

2003

2002

2000

2004

NAS System Engineering Process

NAS-Level Requirements

Unallocated Requirements

CNS-ATM Task 17

Functional Architecture

Functional Hierarchy

N

2

 Data I/F Diagrams

CNS-ATM Task 17

FFDs

SWIM Services &

 Operating Concepts

NWIS/SWIM

CONUSE

NWIS/SWIM

CONUSE

NWIS in NAS

Architecture 4.0

NWIS in NAS

Architecture 4.0

FTI

FTI

NAS Communications

 Architecture Vision

CNS-ATM Task 10

NAS Communications

 Architecture Vision

CNS-ATM Task 10

Future NAS Communications

 Architecture/Validation

 CNS-ATM Task 11/12

Future NAS Communications

 Architecture/Validation

 CNS-ATM Task 11/12

NWIS Architecture Study

CNS-ATM Task 15

NWIS Architecture Study

CNS-ATM Task 15

Physical Architecture

Network Functionality

Broker Arch. Implications

Network

Mngt

.

CNS-ATM Task 17

1999

SWIM Services/Network

Simulation

IS/SM

CNS-ATM Task 17

Communication Architecture

RTCA NAS

CONOPs

RTCA NAS

CONOPs

ICAO ATMCP

SWIM Paper

ICAO ATMCP

SWIM Paper

Figure 1‑1: ITT/ASD-100 Communications Architecture Development

1.1.2 Pre-SWIM Communications Architecture Activities

Pre-SWIM communications architecture studies have analyzed NAS communications requirements and the applicability of current technologies and architecture concepts for meeting NAS communications needs. These Communication, Navigation, and Surveillance (CNS) and Air Traffic Management (ATM) studies include CNS-ATM
 Tasks 4, 5, 10, 11, 12, and 14.

Building on earlier communications tasks, CNS-ATM Task 11 developed a recommended communications architecture based on modern Internet Protocol (IP)-based telecommunications technologies in detail for a regional subset of the NAS and evaluated this architecture to demonstrate that the existing FAA requirements for operational voice and data, as well as administrative voice and data, could be served by these technologies. Task 12 analyzed existing NAS communications performance requirements and assessed the ability of these requirements to sufficiently specify the performance of new communications architectures; in particular the CNS-ATM Task 11 recommended architecture. Task 12 also included verification through OPNET modeling and simulation that the technology recommended in Task 11 would meet or exceed the NAS performance requirements. CNS-ATM Task 14 verified through OPNET simulation that the architecture would still meet these requirements even when modern security enhancing functionality was added to it.

1.1.3 SWIM Development Background

While the above studies were in progress, the FAA, RTCA, Inc., EuroControl, and other organizations were formulating new concepts for controlling air traffic more efficiently and safely. The increased availability of information to both service providers and users of the NAS is a key component of these future NAS operational concepts. They rely on a common understanding of current and expected NAS conditions to provide an environment that can adapt dynamically to promote a safer and more efficient NAS. NAS-Wide Information Services (NWIS) was the name the FAA used for the communications services that would enable these new information sharing concepts in the NAS; internationally these services were labeled System-Wide Information Management (SWIM). In 2003 the FAA adopted the SWIM designation.

Key milestones in the development of SWIM concept include the following (see Figure 1‑1):

· Initial definitions of the NWIS concept by the NAS Information Architecture Team for its study of the NAS Information Architecture Evolution (1998)

· Definitions of high-level operating concepts for SWIM in the RTCA NAS Concept of Operations (CONOPS) (2000 and 2002)

· Development of the NWIS Concept of Use (CONUSE) document (2002)

· Development of the NWIS architecture concept in the CNS-ATM Task 15 study (February 2003)

The future vision of NAS operations supports effective collaboration among all participants, provides flexibility in assigning airspace and infrastructure resources, automates the establishment and teardown of communications connections between NAS systems to support NAS operations, and offers increased NAS information security. Extensive information sharing is required to support such a vision. SWIM will provide this information sharing functionality. High-level functionality for SWIM has been derived from the two NAS concept documents listed above: the NAS CONOPs and the NWIS CONUSE. The overriding principle of SWIM presented in these documents is delivery of the right information to the right place at the right time.

CNS-ATM Task 15 started by analyzing the two SWIM concept documents. It then defined and described FAA information services for surveillance, weather, flight information, aeronautical information, and resource management and developed an Information Source/Sink Model for these services. Of particular relevance to this current task, Task 15 developed and recommended a high level functional architecture to support delivery of these information services, more specifically, an architectural concept that provides Publish/Subscribe information management with decentralized management and decentralized data exchange. The findings of CNS-ATM Task 15
 directly support Task 17 activities and will be described in greater detail in this report.

1.1.4 Other SWIM Development Related Activities

SWIM – Net Centric Meetings were initiated by FAA ASD-100 starting in 2003 because of increasing, parallel interest in the “SWIM” concept inside the FAA and similar “Net Centric” activities within other Government agencies such as NASA and the Department of Defense (DoD). These meetings feature participation by interested parties in both Government and Industry and seek to promote a common vision and implementation strategy for SWIM in the NAS, both in the near future and in the decades to come. It is anticipated that work performed as a follow-on to this CNS-ATM Task 17 will be conducted as part of a larger team effort encompassing FAA ASD-100, FAA AND-500, NASA, MITRE, MIT/LL, Boeing ATM, CSC, ITT/AES, and several other contracting organizations.

1.2 Overview of Task 17

The purpose of CNS-ATM Task 17 is to continue the development of the NWIS/SWIM architecture concepts presented in Task 15 by defining SWIM functional and physical architectures and developing NAS-level requirements required to provide SWIM functionality. While the goals of Tasks 15 and 17 were similar, Task 17 adopted a more formalized approach made possible by the release of the NAS System Engineering Manual (SEM)
. The SEM provides a structured System Engineering (SE) methodology based upon industry standard and FAA best practices (see Figure 1‑2). This process is beneficial because
:

SE addresses translation of stakeholder needs into system requirements and facilitates the process by which the specification of systems and/or components satisfies those requirements. Although programs differ in underlying requirements, SE provides a logical sequence of steps toward deriving good requirements and transforming them into solutions regardless of the program’s size or complexity. These steps generate a series of work products that specify characteristics of systems (at any level), demonstrate and document the traceability to stakeholder needs (expressed or implied), and define how the requirements are validated and the systems (and associated components) are verified. To maximize effectiveness, SE commences before any significant product development activities and continues throughout the program’s lifecycle. When performed correctly, SE helps to ensure that program execution is right from the start. If problems are encountered, they are detected and resolved early. This process reduces program cost and risk.

[image: image2.png]

Figure 1‑2: NAS System Engineering Process

An important concept presented in the SEM is the idea that system engineering is performed as an iterative process, with periodic feedback throughout the SE process as the system architecture evolves (see Figure 1‑3). For example, requirements feedback is required when proposed architectures cannot meet all requirements, perhaps because of technology or cost constraints. Similarly, design feedback may be necessary because certain design issues discovered in the synthesis process can compel a re-examination of the functional analysis process.

[image: image3.png]Stakeholder.
Requirements.

ystem Segment Design D¢
Interfacs

Engineering

Trade
Studies

Requiements Verfieation Toop)

Documentation Requirements
& Architecture

Documentation

Perfomance
Detailed

Figure 1‑3: Requirements and Architecture Definition

As indicated in Figure 1‑2, the entire SE process is a massive undertaking requiring significant resources and years to complete. However, a key element of this process is the fact that SE activities should be tailored to the system under consideration, as well as to the phase of development. This goes along with the iterative nature of the SE process. For this reason the scope of Task 17 has been limited to several critical process phases appropriate to this early stage of SWIM development, specifically:

· Functional Analysis

· Requirements development (part of the Requirements Management Process)

· First stages of Synthesis, that is, Physical Architecture development

· Trade Studies – preliminary simulations

· Specialty Engineering – preliminary security engineering

· Lifecycle Engineering – preliminary transition analysis

The activities characterized in the first five bullets above all contribute to the Synthesis Process, as depicted in Figure 1‑3. As shown in Figure 1‑4, there are several other activities taking place as part of the synthesis process. For clarity, those Synthesis activities performed at least in part for Task 17 are shaded in green in the figure.

[image: image4.wmf]

Functional

Analysis

Requirements

Management

Requirements

Review and

Objectives

Definition

Allocate

Requirements to

System Elements

Define Design

Solution Plan

Identify System Safety

Engineering Attributes

Identify Technology

Requirements

Identify Make or Buy

Alternatives

Identify Off

-

the

-

Shelf

Availability

Allocate Design

Constraints to

System Elements

Define Design

& Performance

Characteristics

Assess Failure Modes,

Effects, & Critically

Assess Testability

Needs

Assess

Standardization

Opportunities

Assess Life Cycle

Factors *

Define Physical

Architecture

Analyze &

Refine Design

Alternative

Preferred

Design

Selection

Configuration Baseline and

Architecture Documentation

Assess

Requirements

Compliance

Requirements

Feedback

Loop

Design

Feedback

Loop

compliant

Non

-

compliant

with baseline

Synthesis

Loop

Key

Task 17 Key

Activity

Other Task 17

Activity

* For Task 17: Transition Analysis

Functional

Analysis

Requirements

Management

Requirements

Review and

Objectives

Definition

Allocate

Requirements to

System Elements

Define Design

Solution Plan

Identify System Safety

Engineering Attributes

Identify Technology

Requirements

Identify Make or Buy

Alternatives

Identify Off

-

the

-

Shelf

Availability

Allocate Design

Constraints to

System Elements

Define Design

& Performance

Characteristics

Assess Failure Modes,

Effects, & Critically

Assess Testability

Needs

Assess

Standardization

Opportunities

Assess Life Cycle

Factors *

Define Physical

Architecture

Analyze &

Refine Design

Alternative

Preferred

Design

Selection

Configuration Baseline and

Architecture Documentation

Assess

Requirements

Compliance

Requirements

Feedback

Loop

Design

Feedback

Loop

compliant

Non

-

compliant

with baseline

Synthesis

Loop

Functional

Analysis

Requirements

Management

Requirements

Review and

Objectives

Definition

Allocate

Requirements to

System Elements

Define Design

Solution Plan

Identify System Safety

Engineering Attributes

Identify Technology

Requirements

Identify Make or Buy

Alternatives

Identify Off

-

the

-

Shelf

Availability

Allocate Design

Constraints to

System Elements

Define Design

& Performance

Characteristics

Assess Failure Modes,

Effects, & Critically

Assess Testability

Needs

Assess

Standardization

Opportunities

Assess Life Cycle

Factors *

Define Physical

Architecture

Analyze &

Refine Design

Alternative

Preferred

Design

Selection

Configuration Baseline and

Architecture Documentation

Assess

Requirements

Compliance

Requirements

Feedback

Loop

Design

Feedback

Loop

compliant

Non

-

compliant

with baseline

Synthesis

Loop

Key

Task 17 Key

Activity

Other Task 17

Activity

* For Task 17: Transition Analysis

Figure 1‑4: The Synthesis Process Activities

Task 17 SWIM system engineering work items were organized into specific task activities as identified below:

· Subtask A: Functional Architecture

· Subtask B: NAS-Level Requirements Development

· Subtask C: Physical Architecture Development

· Subtask D: SWIM Transition Alternatives and Recommendations

· Subtask E: SWIM Architecture Simulation/Validation

Subtasks A and B have been completed and are documented in separate reports
,
. This Subtask 17C report documents the identification and analysis of various design aspects of the SWIM physical architecture and provides physical architecture alternatives. It should be noted that following issuance of separate reports for Subtasks 17D and 17E, a cumulative final report for CNS-ATM Task 17 documenting the activities for all Task 17 tasks will be developed.

1.3 Objectives of SubTask 17C

The overall objective of Subtask C is to develop alternative SWIM physical architecture and infrastructure descriptions. These include identification of components and procedures both for implementing and managing information services in SWIM. The representative architecture alternatives should meet all of the requirements developed in Subtask B as well as incorporate all the functionality identified in Subtask A. The infrastructure descriptions should provide clear explanations of each component and identify interactions among components.

1.4 Document Organization

This report includes six sections and six appendices as follows:

· Section 1: Introduction

· Section 2: Subtask 17C Methodology

· Section 3: Defining the Physical Architecture Framework

· Section 4: Physical Architecture Design Tradeoffs

· Section 5: Physical Architecture Definitions and Comparisons

· Section 6: Summary

· Appendix A: Information Object Reference Material

· Appendix B: Technology References

· Appendix C: Security Information Tables

· Appendix D: NAS Sensors and Systems

· Appendix E: Terms and Concepts Used in the Report

· Appendix F: List of Abbreviations and Acronyms

This section describes the scope and objectives of the CNS-ATM Task 17 study in the context of NAS modernization and FAA’s efforts to improve the exchange of information. Section 2 describes the subtask workflow and methodology used in Subtask C to develop and analyze alternate SWIM physical architecture design solutions. Section 3 provides the synthesis of earlier task results in defining a design solutions plan and develops SWIM’s physical design framework of basic components. Section 4 analyzes design issues, options and tradeoffs in a number of areas such as data representation and management, network management including security, and technology/implementation choices. Section 5 proposes three high-level physical architecture candidates and identifies comparison criteria. Section 6 summarizes the Subtask 17C activities and findings. Appendices A through F provide more detail on SWIM Information Objects (A), technologies (B), security considerations (C), and interfaces for NAS sensors and legacy systems (D), while the final two appendices provide reference material on terms and concepts (E) and acronyms (F).

1.5 Applicable Documents

The following list identifies some of the more important FAA and other source documents used in the preparation of this report.

Concept of Use for NAS-Wide Information Services (NWIS), Federal Aviation Administration, July 1, 2002.

NAS-Wide Information Services (NWIS) Architecture Development, CNS-ATM Task 15 Report, Prepared for Federal Aviation Administration, ASD-120, by ITT Industries, Advanced Engineering and Sciences Division, TR03010, February 22, 2003.

NAS-Wide Information Services (NWIS)/System-Wide Information Management (SWIM) Architecture and Requirements, Functional Requirements, CNS-ATM Task 17A Report, Prepared for Federal Aviation Administration, ASD-120, by ITT Industries, Advanced Engineering and Sciences Division, TR03091, July 29, 2003.

(SWIM) Architecture and Requirements, NAS-Level Requirements Development, CNS-ATM Task 17B Report, Prepared for Federal Aviation Administration, ASD-120, by ITT Industries, Advanced Engineering and Sciences Division, TR03091, September 8, 2003.

National Airspace System Concept of Operations, RTCA Select Committee for Free Flight, Fall 2002.

National Airspace System - System Engineering Manual, Federal Aviation Administration, ASD-100 Architecture and System Engineering, Version 2.1, November 13, 2003.

National Airspace System – System Requirements Specification, NAS-SR-1000 with Changes 1-16, US Department of Transportation, Federal Aviation Administration, March 21, 2002.

2. Subtask 17C Methodology

2.1 Introduction

As noted above, Task 17 has adopted the NAS standard systems engineering top-down methodology described in the NAS SEM where it is applicable. At some point a bottom-up analysis also should be performed to incorporate legacy NAS systems into the SWIM design. This would be the subject of future work necessary for SWIM implementation and transition.

This report focuses on the Subtask 17C activities shown in the workflow diagram shown in Figure 2‑1.

2.2 Subtask 17C Workflow

As shown in Figure 2‑1, Subtask C activities included the following major steps:

· Identification of technologies required to develop SWIM

· Development of candidate SWIM physical architecture components

· Identification of SWIM interfaces and performance characteristics

· Allocation of functionality and requirements to system components

· Identification and analysis of physical architecture design issues and tradeoffs

· Development of alternative physical architecture solutions based on analysis of design issues/tradeoffs

· The Subtask C report documenting the physical architecture alternatives and development process

[image: image5.wmf]Define SWIM

Components

Define SWIM

Components

Task 17A

Task 17B

Map SWIM Functions

To Components

Map SWIM Functions

To Components

SWIM Component

List

SWIM Component

List

CNS

-

ATM Tasks

(11, 12, 14, 15)

Service

Architecture

Concepts

NWIS

Concept of Use

NAS Concept

of Operations

CNS

-

ATM

Task 15

Task 17C

Report

Industry

Models &

Standards

Industry

Models &

Standards

Identify SWIM

Technology

Requirements

Identify SWIM

Technology

Requirements

Identify SWIM

Interfaces &

Performance

Characteristics

Identify SWIM

Interfaces &

Performance

Characteristics

Allocate

Functionality &

Requirement to

SWIM Components

Allocate

Functionality &

Requirement to

SWIM Components

Identify &

Analyze

Design

Tradeoffs

Identify &

Analyze

Design

Tradeoffs

Develop &

Analyze SWIM

Architecture

Alternatives

Develop &

Analyze SWIM

Architecture

Alternatives

Identify Data

Model

Concepts

Identify Data

Model

Concepts

Identify

Candidate

Components

Identify

Candidate

Components

Define SWIM

Components

Define SWIM

Components

Task 17A

Task 17B

Map SWIM Functions

To Components

Map SWIM Functions

To Components

SWIM Component

List

SWIM Component

List

CNS

-

ATM Tasks

(11, 12, 14, 15)

Service

Architecture

Concepts

NWIS

Concept of Use

NAS Concept

of Operations

CNS

-

ATM

Task 15

Task 17C

Report

Industry

Models &

Standards

Industry

Models &

Standards

Identify SWIM

Technology

Requirements

Identify SWIM

Technology

Requirements

Identify SWIM

Interfaces &

Performance

Characteristics

Identify SWIM

Interfaces &

Performance

Characteristics

Allocate

Functionality &

Requirement to

SWIM Components

Allocate

Functionality &

Requirement to

SWIM Components

Identify &

Analyze

Design

Tradeoffs

Identify &

Analyze

Design

Tradeoffs

Develop &

Analyze SWIM

Architecture

Alternatives

Develop &

Analyze SWIM

Architecture

Alternatives

Identify Data

Model

Concepts

Identify Data

Model

Concepts

Identify

Candidate

Components

Identify

Candidate

Components

Figure 2‑1: Task 17C Detailed Work Flow

It should be noted that these activities were highly dependent both on the results of Subtasks 17A (Functional Analysis) and 17B (NAS-Level Requirements for SWIM), as well as on the findings of CNS-ATM Task 15. As explained above, the SE process is highly iterative, and as such, the Task 17 architecture development activities can be thought of as a second iteration of the Functional Analysis and Physical Architecture development processes, with Task 15 providing the first iteration, though on a less formalized basis. It is for this reason that one architecture solution: the Publish/Subscribe architecture concept, which is the result of the Task 15 preliminary alternative solution comparison/evaluation, is thus considered an input to Task 17, rather than being placed into consideration as a candidate again for this task. Section 3.3.2.1 provides an overview of the Task 15 architecture comparison analysis and justification for the recommendation of the Publish/Subscribe architecture concept for SWIM.

The Subtask 17C methodology used to perform each individual step in this analysis (identified in Figure 2‑1) is captured in Table 2‑1.

Table 2‑1: Methodology for Subtask 17C Analysis Steps

	Analysis Step Name
	Methodology

	Identify SWIM Technology Requirements
	Market and technology research was conducted in the following area: software architecture patterns, distributed computing patterns, middleware study, application development environment, XML. Metadata and associated standards

	Define SWIM Components
	SWIM functions (from Task 17A) were combined into logical groups; based on recommended architecture concepts (i.e. publish/subscribe), logical groups were translated into components

	Identify SWIM Interfaces & Performance Characteristics
	Based on the identified component set for SWIM as well as identification of FAA legacy systems in previous studies (Task 15, Task 12 study) interface characteristics were captured; associating identified SWIM services (Task 15) with NAS-level performance requirements (NAS-SR-1000), high-level performance characteristics for SWIM were identified

	Allocate Functionality and Requirements to SWIM Components
	Based on the tasks conducted to define SWIM components, a functional compliance matrix was generated for SWIM; using a similar process, NAS-level requirements for SWIM (from Task 17B) are allocated to SWIM components and a requirements compliance matrix was developed

	Identify & Analyze Design Tradeoffs
	Based on identified SWIM components and their relationships, design issues specific to SWIM components and interfaces were identified. For each design topic, research was conducted to support clear definition of the topic and alternative options were identified.

	Develop and Compare SWIM Architecture Alternatives
	Design trade-off analysis results were used to develop several candidate alternative physical architectures. The components of each architecture (hardware/software, data, facilities/people) were described. Criteria for evaluating the alternatives were defined.

3. Defining the Physical Architecture Framework

The approach to the development of the physical architecture for SWIM uses the process outlined in the NAS SEM for Synthesis activities as a guide. As defined in the SEM,
the purpose of Synthesis is to define design solutions and identify systems that will satisfy the requirements baseline.”
 An output of the Synthesis process is the physical architecture.

The following subsections identify inputs used for SWIM architecture development, document the development of a physical architecture framework for SWIM, and identify design tradeoffs specific to the SWIM architecture and used to develop a detailed physical architecture description.

3.1 SWIM Physical Architecture Development Inputs

As Synthesis activities encompass the system design process, there are several engineering inputs that are necessary. Initial inputs to the design process, as identified in the NAS SEM, are presented in Table 3‑1.

Table 3‑1: Needed Synthesis Data

[image: image6]
The focus of the current effort is not the full range of system design and synthesis activities as described in the SEM. Rather, the focus is on identification of key design issues related to the development of the SWIM architecture and the development of initial physical architecture alternative concepts. As such, some of the initial inputs identified above, such as the Integrated Program Plan (IPP); Operational Services and Environment Description (OSED); and Work Breakdown Structure (WBS), that do not exist have not been considered at this time. This does not prevent the identification of key physical architecture design concepts and it should be noted that iteration of the design process can take place as these and other inputs become available.

3.1.1 Overview of Analysis Inputs

The following Synthesis Process inputs were used for the development of the SWIM physical architecture in Subtask 17C:

· Functional architecture (from Subtask 17A and Task 15)

· Requirements Baseline (from Subtask 17B)

· Legacy System Interface Requirements and System Specifications (from Task 15 and other sources)

· Market Research

· SWIM Concept of Use (CONUSE) and NAS Concept of Operations (CONOPs) (used in lieu of an OSED)

The Functional Architecture input includes the material generated as part of the Task 15 and Subtask 17A efforts. Task 15 included a significant amount of Functional Analysis (FA) activities that were a precursor to the SEM defined Subtask 17A FA activities and outputs (e.g. functional hierarchies, functional flow diagrams, and N2 charts). The most applicable and relevant findings of Task 15 in regard to functional analysis are summarized in Section 3.1.2.1. These and other Task 15 findings (see Section 3.3.2.1) have been used to guide the development of the SWIM physical architecture.

The Subtask 17A effort identified high-level functionality of SWIM, organized this functionality into a functional hierarchy, and identified data flow across functional interfaces. An overview of the functions identified for SWIM is captured in Section 3.1.2.2.

The Requirements Baseline used for the architecture development effort is a list of proposed NAS level requirements needed for SWIM developed as part of Task 17B. These requirements have been derived directly from the high-level functions captured in the Subtask 17A SWIM functional analysis effort. To date, these requirements are still undergoing FAA review but are considered satisfactory input to this initial physical architecture development task. It is expected that NAS level requirements developed for SWIM will be issued later as a NAS Change Proposal (NCP) as part of the ASD-100 efforts to re-write NAS-SR-1000.

The definition of legacy systems consists of a wide range of FAA and analysis documents. Aside from the Task 15 report, reference documents used for this report include FAA system specifications, Interface Requirement Documents (IRDs), and the Currant
 and Fuschia
 Books. These items support the identification of SWIM entity and interface information.

Market and technology research specific to some areas of the physical architecture design concepts and technology has been performed for Task 17. This includes research of the following technologies/products:

· Distributed computing integration

· Information/context management

· Application services

· Information system security

· Data storage

Finally, the SWIM CONUSE and NAS CONOPs have been used as general references to gain context and constraint information regarding SWIM implementation in the NAS.

Though each of the above-listed synthesis inputs contributed to the development of the SWIM physical architecture, it is most instructive to describe in more detail how the SWIM functional architecture has lead to the physical architecture. The following sections describe how the functional architecture has provided a role in defining and/or analyzing design aspects of the SWIM physical architecture.

3.1.2 Functional Architecture Concepts

3.1.2.1 SWIM Architecture Development in CNS-ATM Task 15

While Task 15 was not performed with the structured approach defined by the NAS SEM, it presented an initial, comprehensive analysis of the desired SWIM (NWIS) functional capabilities and a preliminary evaluation of suitable information distribution architecture concepts. This section summarizes the development of the SWIM functional architecture concepts developed in Task 15. Physical architecture analysis conducted as part of Task 15 with relevance to the current study is addressed in Section 3.3.2.1. Section 3.3.2.1 shows how the Task 15 SWIM architecture concepts have been used in conjunction with Subtasks 17A and 17B to develop the SWIM physical architecture.

In the interest of conformity and clarity, references to “NWIS” in the Task 15 material (with a few exceptions) have been changed to “SWIM” in the following discussions.

The Task 15 functional analysis began with an analysis of the NAS CONOPS and NWIS CONUSE to determine high level SWIM functionality. Following this analysis, a SWIM functional architecture was developed with a functional hierarchy modeled by the following three components:

· “Demand side of information – the NAS information users or searchers

· Supply side of information – the NAS information sources and suppliers

· The intermediary – the information intermediary (including data management and communication functions) between users and suppliers”

This was re-formulated into three broad functional categories:

· “Information Input

· Information Management

· Information Output”

Given these three top-level functions, it was useful to identify applicable standard architecture models to help develop potential components and interconnectivity options suitable for SWIM physical architecture concepts. Thus in Task 15 the three top-level functions were mapped to the Reference Model of Open Distributed Processing (RM-ODP) [ISO/IEC 10746], which provides an open, standards-based system architecture framework for distributed processing system design. Defining an architecture in accordance with a standard Information Technology (IT) framework serves the purposes of
:

· Allowing coordinated development of specific user services

· Enabling data interoperability services through interface standardization

· Supporting the development of a service catalog (to allow users to identify services)

· Enabling the development of generic services that can be used on user-specified data

· Supporting an abstract framework concept that can be implemented in many ways

The RM-ODP model can be defined and described according to multiple viewpoints. Of particular interest for the functional analysis of SWIM is the information viewpoint. The information viewpoint
:

Describes the information that flows in a system and is processed by a system. It focuses on the structuring of semantic information, typically the information that will be stored in a database and communicated between the components of a system. An information model is used to describe the information viewpoint. This information model defines the structure and semantics of the information used in system by defining objects, their properties and their relationships.

The concerns of the information viewpoint have led to the development of derivative standard models for describing different types of information management systems. For SWIM
, a useful and applicable information model is presented in ISO 19101: Geographic information — Reference model, which presents an Extended Open Systems Environment (EOSE) model for geographic information that defines classes of services based on the type of computation they provide. This model is adopted in the Draft International Standard ISO/DIS 19119: Geographic information – Services, which defines six classes of IT services used to categorize geographic services. These services, which can also be related to SWIM services, are defined as
:

· Human Interaction Services: services for management of user interfaces

· Model/Information Management Services: services for management of the development, manipulation, and storage of metadata, conceptual schemas, and datasets

· Workflow/Task Services: services that support specific task activities conducted by humans; they support the development of products involving a sequence of steps conducted by different persons

· Processing Services: services that perform computations involving data

· Communication Services: services for encoding and transfer of data across communication networks

· System Management Services: services for the management of system components, applications and networks; includes management of user accounts and access privileges

According to the ISO RM-ODP model, to support flexible deployment, the defined Information Technology (IT) systems information services should be structured as multi-tiered distributed architectures, such as is depicted in Figure 3‑1.

[image: image7.wmf]

Workflow task

services

Shared processing

services

User processing

services

Model/Information

management

services

Human interaction

services

System

management

services

Communication

services

Figure 3‑1: Logical Multi-Tiered Architecture

These six classes of IT information services are fairly generic and were adapted in Task 15 as a basis for applying SWIM functionality to an architecture model. Based on the definitions of the high-level SWIM functions and the RM-ODP information services, a mapping of information service categories to the three high-level SWIM functional components is as shown in Table 3‑2.

Table 3‑2: Mapping High-Level SWIM Functions to RM-ODP Information Services

	High-Level SWIM Functional Components
	Associated ISO RM-ODP IT Information Service

	Input Function
	· Human Interaction Services

· Model/Information Management Services

	Management Function
	· User Processing Services

· Shared Processing Services

· System Management Services

· Communication Services

· Model/Information Management Services *

	Output Function
	· Human Interaction Services

· Workflow Task Services

· Model/Information Management Services

	* Note: This was not included in the Task 15 table; further analysis reveals that it should have been.

For Task 15, supporting the three top level SWIM functions are a group of underlying core SWIM sub-functions: publish, push, transform, pull, and control. A detailed logical view of the Task 15 SWIM architecture that illustrates these key functional components of SWIM and their general interrelation is provided in Figure 3‑2
. In this figure, the transactions between information sources/users and SWIM, and between sources and users are explicitly depicted to highlight that SWIM can be used to advertise and request information and set up a service connection; however information can either be shared through the SWIM management function or directly between a data publisher and data consumer.

[image: image8.wmf]

SWIM Publish

Client

Publish

SWIM Interface

Service

Interface

INFORMATION MANAGEMENT

Control

Push

Pull

Publish

Registration,

Catalog, & Broker

Service

SWIM Consumer

Client

SWIM Interface

Service

Interface

Pull

Push

Registration,

Catalog, & Broker

Service

INFORMATION INPUT

INFORMATION OUTPUT

Transform

Distributed Communications

& Networking Infrastructure (in blue)

BLUE ARROW: Management Information Flow

SWIM Repositories

SERVICE INFORMATION

FLOW

SWIM Publish

Client

Publish

SWIM Interface

Publish

SWIM Interface

Service

Interface

Service

Interface

INFORMATION MANAGEMENT

Control

Push

Pull

Publish

Registration,

Catalog, & Broker

Service

SWIM Consumer

Client

SWIM Interface

Service

Interface

Pull

Push

Registration,

Catalog, & Broker

Service

INFORMATION INPUT

INFORMATION OUTPUT

Transform

Distributed Communications

& Networking Infrastructure (in blue)

BLUE ARROW: Management Information Flow

SWIM Repositories

SERVICE INFORMATION

FLOW

Figure 3‑2: Logical View of SWIM and User Interfaces

The five core SWIM sub-functions presented in Task 15 can be illustrated more completely by showing the mapping between these services and the six ISO RM-ODP IT Information Services depicted in Figure 3‑1. This mapping is provided in Figure 3‑3. It should be noted that four of the six RM-ODP services: Human Interaction Services, Model/Information Management Services, System Management Services, and Communication Services are most applicable to SWIM; the Workflow/Task Services and Processing Services may be beyond the scope of SWIM and were not considered further in Task 15, though this still needs to be resolved.

3.1.2.2 Functional Architecture Concepts Developed in Subtask 17A

One of the initial steps of the Task 17 study included functional analysis of the SWIM concept. Based on SWIM operating concepts addressed in the SWIM CONUSE and NAS CONOPs, the component functions of SWIM were defined. Specifically, at the highest level perspective, these component functions included:

· Manage SWIM Service Interfaces (F1.0)

· Manage SWIM Operations (F2.0)

· Manage SWIM Data (F3.0)

These high level functions address three primary yet distinct areas within an information sharing capability in which SWIM provides a role: 1) interfacing to NAS users and resources that supply or receive data; 2) providing all operations that relate to enabling information services (e.g. processing requests, dynamically establishing connections between data suppliers and data requesters, ensuring service quality and security, etc); and 3) supporting a means to use and index data in standardized formats to enable information exchange by all types of NAS users and resources.

The Subtask 17A functional analysis also included the decomposition of these high-level functions to 2nd and 3rd level functions. The relationship between functions was captured in function flow diagrams and N2 data flow diagrams. Subtask 17B activities included the generation of NAS level requirements for SWIM derived from the Subtask 17A functional analysis outputs.

The Subtask 17A functional analysis resulted in an architecture with component functions that can be contrasted to the high level functions developed for Task 15: Information Input, Information Management, and Information Output. Though both functional architectures are considered to be complete, it is not totally straightforward to map their high level functions to each other.
 It is useful and informative, however, to map the high level functions of these two functional architectures to the ISO RM-ODP model discussed in Section 3.1.2.1 above. This is shown in Figure 3‑3. Note in the figure that the RM-ODP model provides a straightforward way to reorganize functions into two major categories: Information Management and Network Management. This allocation of functionality has its merits in the development of a physical architecture, especially as it groups together all network management functionality, which can be decomposed in accordance with ISO Network Management standards, in particular ISO 7498-4
.

[image: image9.wmf]Information

Input

Information

Management

Information

Output

System

Management

Services

Human

Interaction

Services

Model/Information

Management

Services

Communication

Services

ISO RM

-

ODP Model

Manage SWIM

Service Interfaces

Manage SWIM

Operations

Manage

SWIM Data

Information

Management

Task 17A Functions

Task 15 Functions

Network

Management

Information

Input

Information

Input

Information

Management

Information

Management

Information

Output

Information

Output

System

Management

Services

System

Management

Services

Human

Interaction

Services

Human

Interaction

Services

Model/Information

Management

Services

Model/Information

Management

Services

Communication

Services

Communication

Services

ISO RM

-

ODP Model

Manage SWIM

Service Interfaces

Manage SWIM

Service Interfaces

Manage SWIM

Operations

Manage SWIM

Operations

Manage

SWIM Data

Manage

SWIM Data

Information

Management

Task 17A Functions

Task 15 Functions

Network

Management

Figure 3‑3: Mapping Functional Architectures

3.1.2.3 Revised Functional Architecture Concepts Developed in Subtask 17C

Two initial steps were taken to develop a physical architecture for SWIM (refer to Figure 2‑1). First, technologies required to meet the SWIM functions were identified. As a first step towards identifying SWIM components, identification of enabling technologies provides a means to determine if physical architecture components for SWIM exist as commercial products that implement particular technologies and functions or if SWIM functionality requires developmental components. Second, general categories of components that support the implementation of SWIM functions were identified. After these two activities were initiated, a careful review of the SWIM functions was performed in light of the previous work performed for Task 15. It was during this review that the revised functional architecture that groups together network management functionality and information management functionality was developed. This revised functional architecture, shown in Figure 3‑4, leads to a more straightforward physical architecture design process. In other words, a new iteration of the functional analysis was performed by way of design feedback during the initial physical architecture development activities. As a result, the realigned functional hierarchy defined for SWIM include two component functions at the highest-level, namely (see Figure 3‑4):

· Manage SWIM Information (F1.0)

· Manage SWIM Networks (F2.0)

[image: image10.wmf]SWIM

Manage SWIM

Information

Manage SWIM

Networks

Manage SWIM

Data

Manage Data

Storage

Manage SWIM

Interfaces

Maintain Network

Security

Manage Network

Configurations

Maintain

Performance

Manage Network

Faults

Manage SWIM

Accounts

Broker Service

Requests

Figure 3‑4: 1st and 2nd Level SWIM Functional Decomposition

Further discussion of the development of the SWIM physical architecture is provided in the next section.

3.2 Defining the Design Solution Plan

A challenge to defining a physical architecture for SWIM is gaining consensus on exactly what a physical architecture should be. The SEM defines a physical architecture as identifying the physical subsystems, and architecture flows between subsystems that will implement the functions and provide the needed services/capabilities.
 This definition supports varying levels of detail in defining a physical architecture. Categories of components and interfaces can be identified, and a specific implementation of a component in specific facilities with specific interfaces can be identified. This flexibility in the descriptive detail has both advantages and disadvantages. It is an advantage in the sense that an iterative process can be used to first identify a high-level architecture framework and then systematically develop more detailed physical architecture descriptions. The disadvantage lies in determining the level of detail sufficient to completely define a physical architecture and the difficulty in defining the boundary between the physical architecture and a system design.

A secondary challenge to the development of the SWIM architecture is aligning terms and perspectives of a system that addresses both information technology and communications (which are typically addressed independently and in different manners) as well as accommodating both the software development perspective and the system engineering perspective.

To develop a plan for developing the physical architecture, the system requirements were reviewed and high-level objectives were identified. Design objectives can encompass such criteria as performance, feasibility, reliability, compatibility, extensibility, flexibility, cost, and schedule. At this stage of SWIM development, objectives included feasibility and compatibility with the SWIM and NAS requirements. To address these requirements in the development of the SWIM physical architecture, steps were included to identify technologies required to implement SWIM (to evaluate feasibility) and develop function and requirement compliance matrices (to ensure compatibility with defined SWIM functions and requirements). Other objectives are naturally considered as part of the design process. As SWIM development work continues, additional design objective drivers can be continuously reviewed and accommodated in the SWIM design process.

Several strategies were utilized to meet the challenges and design objectives identified above. First, the system engineering process used as the framework for the analysis methodology was referenced and described (See Section 1.2). Second, a glossary was generated to clearly define terms used in the analysis. Then, after identifying technology required to implement SWIM, generic categories of components and their interfaces were captured in a high-level architecture framework. A mapping of the components in this framework to information management and communication management SWIM functions was also performed. Both information management and communication design issues applicable to the developed physical architecture framework were identified and examined. Finally, based on the investigation and analysis of tradeoffs specific to these design issues, more detailed physical architecture definitions were developed.

Specific tasks performed in the development of the SWIM physical architecture are captured in Figure 2‑1. These include:

· Identification of technology required to enable SWIM

· Development of hardware/software and data components to accommodate SWIM functionality

· Identification of SWIM Interfaces and Performance Characteristics

· Allocation of SWIM functions/requirements to SWIM components and interfaces

· Identification and analysis of information management and communication design trade-offs and issues

These activities and their associated outputs are documented in the following subsections. The investigation of the design trade-offs is addressed in Section 4.

3.3 Developing the SWIM Physical Architecture Framework

Where possible and relevant, the task activities used for developing a physical architecture drew upon SWIM architecture analyses performed for Task 15. Of particular relevance to the definition of the SWIM physical architecture was the analysis that identified and compared physical architecture alternatives for SWIM. This analysis led to the recommendation of a publish/subscribe architecture for SWIM. Although the Task 15 analyses and results did not limit the range of possibilities explored in this study, aspects of the previous analysis are relevant and are included here in Section 3.3.2.1.

3.3.1 SWIM Enabling Technologies

With a goal of identifying the types of components that can satisfy SWIM functionality and become building blocks of the SWIM physical architecture, the underlying technologies that enable SWIM functionality were identified. These technologies were identified based on the first and second-level functional decomposition of the SWIM functional architecture.

Table 3‑3 summarizes the functional components of SWIM (down to the 2nd-level decomposition) as defined in the functional architecture and maps these to applicable technologies that support the implementation of such functionality.

Table 3‑3: Identification of Technologies Applicable to SWIM Functions

	SWIM Function
	Applicable Technologies

	Manage SWIM Information
	Manage SWIM Data
	Data representation; Wrapper technologies; Domain-specific taxonomies and ontologies; Subscription language

	
	Broker Service Requests
	Middleware

	
	Manage Data Storage
	Distributed database management; data warehousing

	
	Manage SWIM Interfaces
	Wrapper technology; Access control

	Manage SWIM Networks
	Maintain Network Security
	Access control, PKI; Data Encryption; Non repudiation

	
	Maintain Service Quality
	Dynamic bandwidth management; assured delivery

	
	Manage Network Configurations
	Internet; distributed network management; SNMP-based network management; CORBA-based network management

	
	Manage SWIM Accounts
	Source discovery; Source ID

	
	Manage Network Faults
	Distributed network management; self-healing networks

The “Manage SWIM Data” function includes technologies associated with the development and management of a SWIM common data representation. Tools are available and under development to support the implementation of standards that address various aspects of representing and managing data including:

· Defining objects/schemas: Hyper Text Markup Language (HTML), eXtensible Markup Language (XML), ebXML, Standard Generalized Markup Language (SGML), Resource Description Framework (RDF),etc

· Data presentation and format translation: Extensible Stylesheet Language family (XSL), eX tensible Stylesheet Language Transformations (XSLT), XML Path Language (Xpath), browser technology

· Application development: Java, C++

To provide a clear conceptual framework for discussion and analysis of information, an agreed upon set of rules, definitions and concepts is required. This framework is achieved through the definition of domain-specific taxonomies (terminologies and ways of organizing data into categories and subcategories) and ontologies (conceptual relationships among information). For example, the current efforts to update the NAS-SR-1000 to reflect the NAS Service Architecture are creating taxonomy and ontology information specific to the NAS. Standards related to taxonomies and ontologies include Ontology Markup Language (OML) and Simple HTML Ontology Extensions (SHOE).

Another aspect of data representation and management is the subscription language, which, in the case of SWIM, means defining a set of rules for SWIM subscribers to precisely define their need of NAS data. Programming technologies and standards support the development of subscription languages.

“A wrapper is a software adapter or shell that isolates a software component from other components and its processing environment (its context). The wrapped component becomes a software object. Its operational capabilities (functions and data) are encapsulated, and it can be integrated through a standard interface with other software objects ... on a single or distributed processor host. The wrapper manages the timeliness of all shared and external data, and provides any necessary transformations.”
 Wrapper technologies hold particular promise in meeting the challenge of implementing reengineering incrementally by inserting the latest technology in smaller, affordable steps, thereby reducing risk and deferring or reducing cost.
 Wrappers are addressed by programming technologies and standards as well as by information sharing technologies and standards.

Middleware programs provide messaging services so that different applications can communicate. The systematic tying together of different applications, often through the use of middleware, is known as enterprise application integration (EAI). Middleware technology contributes to the distributed aspects of broker services and as applied to SWIM would be useful in tying different SWIM core services together. Standards related to middleware technology include distributing component standards such as (Common Object Request Broker Architecture (CORBA), Enterprise JavaBeans (EJB), and ActiveX).

The “Manage SWIM Data Storage” function can be supported by distributed database management, data warehouses and data marts. Technologies and standards specific to data storage include relational database technology, relational database management systems (RDMSs), object-oriented database technology, object database management systems (ODBMS), and Lightweight Directory Access Protocol (LDAP).

Access control is the means by which the ability to use a computer system is explicitly enabled or restricted in some way (usually through physical and system-based controls). Computer- based access controls can prescribe not only who or what processes may have access to a specific system resource, but also the type of access that is permitted. These controls may be implemented in the computer system or in external devices. Technologies and standards related to access control include software development tools and technologies, along with security technologies including public key infrastructure and data encryption.

Distributed Network Management (DNM) and on-going research on “self-healing” networks may enable more efficient network management capabilities for SWIM. The primary focus of DNM is the support of delegated management functions to implement effective, scalable management systems. There is currently ongoing work in the Internet Engineering Task Force (IETF) and the International Organization for Standardization (ISO) to standardize DNM solutions based on mobile code technology. In terms of self-healing networks, IBM and Cisco Systems Inc are working together to develop a common technology for detecting, recording and resolving networking and computing problems
.

3.3.2 Identifying SWIM Components

The objective of this section is to identify the types of components that could be used as the building blocks of the SWIM physical architecture. This includes hardware and software components; data components; and facility and people components.

The process of identifying components that comprise SWIM is driven by the architecture concept(s) used to implement SWIM functionality. Previous analysis of information-sharing architecture alternatives was performed as part of Task 15. Excerpts of this analysis, which recommended a publish/subscribe information sharing strategy, are included in this report (Section 3.3.2.1). Section 3.3.2.2 provides a description of the data model concepts that have been explored for SWIM. Finally, components that could implement identified SWIM functionality and their enabling technologies are discussed in Section 3.3.2.3.

3.3.2.1 Publish/Subscribe Architecture Approach

As stated earlier, Task 15 included identification and analysis of information sharing architecture strategies that could provide the functionality associated with the Task 15 functional architecture. This analysis serves as a basis and input for the SWIM physical architecture development in Task 17 and is summarized in this section.

Given the functional architecture described in Section 3.1.2, several alternative architecture concept candidates were investigated in Task 15 to determine suitability for meeting NAS information sharing needs:

· NAS-Wide Operational Data Internet Protocol (IP) Communications Network

· Publish/Subscribe Information Management/Communications Network (several variants)

· Request/Reply (Remote Procedure Call)

· Store and Forward (Message Queuing)

· A combination of the above

These are described in Table 3‑4, which includes a summary of their relative advantages and disadvantages. Please note that the publish/subscribe variants (2a, 2b, and 2c) differ in their placement of the brokering function (decentralized “management” vs. centralized “management”) and in data exchange methodology (again decentralized vs. centralized). It should also be noted that Candidates 3 and 4 could be considered to provide some “brokering” functionality, though they suffer from certain disadvantages relative to publish/subscribe architectures; this is explained in the table. A more thorough evaluation of these architecture concept candidates also was carried out in Task 15, where each candidate was assessed according to its ability to provide thirteen critical SWIM functionality’s, as derived from the NAS CONOPS and NWIS CONUSE. This evaluation is summarized in Table 3‑5.

Table 3‑4: Task 15 Candidate SWIM Architecture Concepts

	Architecture Concept
	Description
	Advantages
	Disadvantages

	1.
NAS-wide Operational Data IP Communication Network
	A concept of implementing seamless network connectivity throughout the NAS. Communications are via tightly coupled source/sink network connections using pre-defined network addresses. This concept does not address information management technologies, but rather focuses on implementing flexible and modern communication equipment and protocols.
	No single, centralized bottleneck

No single point of failure

Reliability can be monitored
	Connection setup is not automated, making scalability inefficient and time consuming

Manual procedure for establishing connections is required; it therefore lacks flexibility in adapting to information changes in data sources and sinks

	2a.
Publish/Subscribe Information Management:

Decentralized Management/

Decentralized Data Exchange
	Data providers publish information to the system; and data consumers place requests for information (queries or subscriptions) directly to the data producer. No central entity exists to manage the publish/subscribe process. The data producers maintain their own subscription lists and perform message-brokering functionality independently. Sample applications are stock exchange and multimedia broadcasting. As producers/consumers are considered equal and independent entities, this can be considered a type of peer-to-peer network.
	No single bottleneck

No single point of failure

Fast and efficient data delivery
	NAS end systems would be responsible for managing subscription lists

Data producers must register and maintain requests for their data

Communication management is left to publisher

Data consumer has no insight into status of its request

Potentially large cost/transition impact at each NWIS user site; infrastructure management of the newly implemented software/applications would be complex

	2b.
Publish/Subscribe Information Management:

Centralized Management/

Centralized Data Exchange
	Data providers publish information to the system and requests for information (queries or subscriptions) are made via a centralized Publish/Subscribe manager. This management function may be implemented on multiple servers that communicate and collaborate to act as a single entity. Data producers send messages to a central entity, which then forwards the message to consumers on demand. This type of implementation is used in electronic commerce or banking applications.
	Strong reliability

Regulated data consistency

Dynamically adaptable to changes to sources and sinks

Minimal impact to legacy end systems
	High latency of using centralized process

Hard to support high data throughput

Possible single point of failure

	2c.
Publish/Subscribe Information Management:

Centralized Management/ Decentralized Data Exchange
	This is an intermediate approach to the above two implementations. Centralized dedicated servers execute publish/subscription management; however subscription requests are announced to publishers and the actual data flow is directly between the data producer and data consumer.
	Monitoring of service status and QoS

Minimal impact to legacy systems

Fast and efficient data delivery

Scalable

Dynamically adaptable to changes to sources and sinks
	Management function can become a single bottleneck

Centralized management requires extra step in connection setup as compared to decentralized management

	3.
Request/Reply (Remote Procedure Call)
	This concept is based on the notion of a remote invocation between distributed participants. Over a network channel, a data consumer makes a single request of a data producer, and the data producer responds to the specific request.
	No single bottleneck

No single point of failure
	Cannot be used to efficiently distribute data to multiple parties

Not very scalable

Requires NAS users to place requests for each data item, even when needed on a regular basis

Not efficient in managing information changes to sources and sinks

	4.
Store and Forward (Message Queuing)
	This approach uses an intermediate area to store messages (message queues) while data is being transported. A queue is a common file or database of messages that are awaiting delivery.
	Strong reliability

Regulated data consistency

Dynamically adaptable to changes to sources and sinks

Minimal impact to legacy end systems
	High latency of using centralized information space and access process

Hard to support high data throughput

Possible single point of failure

Lack of flexibility on how messages are accessed

	5.
Combination of above
	Refer to descriptions above
	Refer to above information
	Refer to above information

Table 3‑5: Comparison of Information Sharing Concepts with Required SWIM Functionality

[image: image11.wmf]

4. Store & Forward

3. Request/ Reply

2c. Pub/Sub Central

Mngt

, Decentralized

Data Exchange

2b. Pub/Sub

–

Centralized

2a. Pub/Sub

–

Decentralized

1. IP Data Network

Adaptable

to

dynamic

changes in

sources

&

sinks

Scalable and

standards

based

solution

Monitor

and

maintain

QoS

Minimal

Change

to

Legacy

Systems

Accom

modate

a

variety

of NAS

data

types

Automaticall

establish

source/user

connections

and collect/

deli

ver info

Support both

FAA and

non

-

FAA

ground and

airborne

users

Delivery of

info to

multiple

users

(broadcast

Authen

-

ticate

Users/

Control

Access

Support

delivery of

real

-

time info

in timely

manner

Support

delivery of

static and

dynamic

info on

regular

basis

Users

search for

and

request

desired

info

Enabled

by

integrated

data

network

Candidate

4. Store & Forward

3. Request/ Reply

2c. Pub/Sub Central

Mngt

, Decentralized

Data Exchange

2b. Pub/Sub

–

Centralized

2a. Pub/Sub

–

Decentralized

1. IP Data Network

Adaptable

to

dynamic

changes in

sources &

sinks

Scalable and

standards

based

solution

Monitor

and

maintain

QoS

Minimal

Change

to

Legacy

Systems

Accom

modate

a

variety

of NAS

data

types

Automatically

source/user

connections

and collect/

deliver info

Support both

FAA and

non

-

FAA

ground and

airborne

users

Delivery of

info to

multiple

user

s

(broadcast)

Authen

-

ticate

Users/

Control

Access

Support

delivery of

real

-

time info

in timely

manner

Support

delivery of

static and

dynamic

info on

regular

basis

Users

search for

and

request

desired

info

Enabled

by

integrated

data

network

Candidate

1

1

1

1

Scale: Good:

Fair:

Poor:

Not Addressed:

1 Strongly dependent on implementation

The Task 15 SWIM architecture concept evaluation (and some preliminary cost considerations) resulted in the recommendation of two concepts. The first was the publish/subscribe scenario with centralized management and decentralized information exchange (Concept 2c.). This solution was the only candidate with no scores of “poor”. It was identified as the best overall solution for NWIS because it:

· Provides automated capability for requesting and receiving data, that is, it provides fast and efficient data exchange

· Provides ability to monitor service status and QoS

· Requires some but manageable impact to legacy systems

· Supports delivery of real-time information to multiple users on a regular basis or on-request

· Is able to support security features that authenticate information providers and users and otherwise control access to NAS information

· Provides ability for users to request information from unknown source

· Is the most scalable solution

· Is an adaptable solution to dynamic information changes in sources and sinks

Due to the complexity of NAS systems and their communications interfaces, the need may arise for SWIM to create and maintain new or replicated data stores that are independent and perhaps even kept isolated from existing NAS data collections. As a result, it may be necessary and beneficial to implement some centralized management information exchange architecture “islands” (solution Concept 2b) for some services in the SWIM architecture scheme to complement the centralized management/decentralized information transaction architecture.

Task 15 also noted that, although Concepts 2c and 2b were recommended, it was understood that there may be situations in the NAS where due to strict performance, security or other requirements, the interface between a data producer and consumer may be across a network connection where no information management capability is implemented (similar to Concept 1). As needed, these types of communications also could be supported under a SWIM concept. They would be additional “islands” of connectivity. To truly address the various and at times complex connectivity requirements of the NAS, SWIM must be able to support a flexible and heterogeneous concept solution set. This, in a way, is support for Concept 5, a combination of the architecture concepts. However, to move towards the information-sharing environment described in the CONOPs and CONUSE, implementing or at least primarily implementing a single architecture concept
 will provide the greatest benefit to NAS users in the shortest time. As individual FAA programs implement data sharing strategies, the global vision for the NAS and its future operating concept need to be kept in mind. As such, it is understood that Concept 5 could exist to some extent, but it was not the recommended solution.

To help illustrate how the SWIM physical architecture has evolved into the form developed in Task 17 and presented in Section 4, Figure 3‑5 presents an initial Task 15 high level SWIM publish/subscribe physical architecture design (except that it does not show the “network management functionality), color coded to depict the different components (i.e. interface components, broker components, and storage components) and showing their interconnectivity.

[image: image12.wmf]

User

Interface(s

)

Publication

Interface

Published

Information

Object Catalog

Publish

Client

Information

Object

Registry

Subscription

Registry/Broker

Subscription

Catalog

Publisher

Registry

Subscriber

Registry

Query User

Registry

Publisher

Status

Information

Object

Dictionary

Published

Information

Repositories

External

Input from

NAS

User

Interface(s

)

User

Interface(s

)

Subscription

Client

Query

Client

Subscription

Interface

Query

Interface

Client

List & Privileges

NAS Grid

Association

NAS Grid

Information

Repository

User

Interface(s

)

Developer

Client

Developer

Interface

Query

Broker

Developer

Registry

Software

Application Catalog

KEY

Interface

Component

Broker

Component

Storage

Component

User

Interface(s

)

Publication

Interface

Published

Information

Object Catalog

Publish

Client

Information

Object

Registry

Subscription

Registry/Broker

Subscription

Catalog

Publisher

Registry

Subscriber

Registry

Query User

Registry

Publisher

Status

Information

Object

Dictionary

Published

Information

Repositories

External

Input from

NAS

User

Interface(s

)

User

Interface(s

)

Subscription

Client

Query

Client

Subscription

Interface

Query

Interface

Client

List & Privileges

NAS Grid

Association

NAS Grid

Information

Repository

User

Interface(s

)

Developer

Client

Developer

Interface

Query

Broker

Developer

Registry

Software

Application Catalog

User

Interface(s

)

User

Interface(s

)

Publication

Interface

Published

Information

Object Catalog

Publish

Client

Information

Object

Registry

Information

Object

Registry

Subscription

Registry/Broker

Subscription

Catalog

Subscription

Catalog

Publisher

Registry

Publisher

Registry

Subscriber

Registry

Subscriber

Registry

Query User

Registry

Query User

Registry

Publisher

Status

Publisher

Status

Information

Object

Dictionary

Information

Object

Dictionary

Published

Information

Repositories

External

Input from

NAS

User

Interface(s

)

User

Interface(s

)

User

Interface(s

)

User

Interface(s

)

Subscription

Client

Query

Client

Subscription

Interface

Query

Interface

Client

List & Privileges

NAS Grid

Association

NAS Grid

Information

Repository

User

Interface(s

)

User

Interface(s

)

Developer

Client

Developer

Interface

Developer

Interface

Query

Broker

Developer

Registry

Software

Application Catalog

KEY

Interface

Component

Broker

Component

Storage

Component

KEY

Interface

Component

Broker

Component

Storage

Component

Figure 3‑5: Task 15 SWIM High Level Publish/Subscribe Physical Architecture

Finally, to close this discussion of Task 15 architecture development activities, it would be useful to illustrate the flow of those activities and certain high-level design concepts (e.g. distributed processing systems, publish/subscribe architectures, and the broker function) developed in Task 15 and carried forth into Task 17. This is shown in Figure 3‑6.

[image: image13.wmf]

SWIM Function Hierarchy

Standards

-

Based

System Architecture

Framework for

Distributed

Processing System

Design

Workflow task

services

Shared processing

services

User processing

services

Model/Information

management

services

Human interaction

services

System

management

services

Communication

services

INPUT

Information Entry/

Collection from end

systems

MANAGEMENT

OUTPUT

Information Use &

Interaction with end

systems

SWIM

Push

Pull

Control

Transform

Publish

Information

Transformation

And Control

INPUT

Information Entry/

Collection from end

systems

MANAGEMENT

OUTPUT

Information Use &

Interaction with end

systems

SWIM

Push

Pull

Control

Transform

Publish

Information

Transformation

And Control

SWIM Publish

Client

Publish

SWIM Interface

Service

Interface

INFORMATION MANAGEMENT

Control

Push

Pull

Publish

Registration,

Catalog, & Broker

Service

SWIM Consumer

Client

SWIM Interface

Service

Interface

Pull

Push

Registration,

Catalog, & Broker

Service

INFORMATION INPUT

INFORMATION OUTPUT

Transform

Distributed Communications

& Networking Infrastructure (in blue)

BLUE ARROW: Management Information Flow

SWIM Repositories

SERVICE INFORMATION

FLOW

SWIM Publish

Client

Publish

SWIM Interface

Publish

SWIM Interface

Service

Interface

Service

Interface

INFORMATION MANAGEMENT

Control

Push

Pull

Publish

Registration,

Catalog, & Broker

Service

SWIM Consumer

Client

SWIM Interface

Service

Interface

Pull

Push

Registration,

Catalog, & Broker

Service

INFORMATION INPUT

INFORMATION OUTPUT

Transform

Distributed Communications

& Networking Infrastructure (in blue)

BLUE ARROW: Management Information Flow

SWIM Repositories

SERVICE INFORMATION

FLOW

User

Interface(s

)

Publication

Interface

Published

Information

Object Catalog

Publish

Client

Information

Object

Registry

Subscription

Registry/Broker

Subscription

Catalog

Publisher

Registry

Subscriber

Registry

Query User

Registry

Publisher

Status

Information

Object

Dictionary

Published

Information

Repositories

External

Input from

NAS

User

Interface(s

)

User

Interface(s

)

Subscription

Client

Query

Client

Subscription

Interface

Query

Interface

Client

List & Privileges

NAS Grid

Association

NAS Grid

Information

Repository

User

Interface(s

)

Developer

Client

Developer

Interface

Query

Broker

Developer

Registry

Software

Application Catalog

KEY

Interface

Component

Broker

Component

Storage

Component

User

Interface(s

)

Publication

Interface

Published

Information

Object Catalog

Publish

Client

Information

Object

Registry

Subscription

Registry/Broker

Subscription

Catalog

Publisher

Registry

Subscriber

Registry

Query User

Registry

Publisher

Status

Information

Object

Dictionary

Published

Information

Repositories

External

Input from

NAS

User

Interface(s

)

User

Interface(s

)

Subscription

Client

Query

Client

Subscription

Interface

Query

Interface

Client

List & Privileges

NAS Grid

Association

NAS Grid

Information

Repository

User

Interface(s

)

Developer

Client

Developer

Interface

Query

Broker

Developer

Registry

Software

Application Catalog

User

Interface(s

)

User

Interface(s

)

Publication

Interface

Published

Information

Object Catalog

Publish

Client

Information

Object

Registry

Information

Object

Registry

Subscription

Registry/Broker

Subscription

Catalog

Subscription

Catalog

Publisher

Registry

Publisher

Registry

Subscriber

Registry

Subscriber

Registry

Query User

Registry

Query User

Registry

Publisher

Status

Publisher

Status

Information

Object

Dictionary

Information

Object

Dictionary

Published

Information

Repositories

External

Input from

NAS

User

Interface(s

)

User

Interface(s

)

User

Interface(s

)

User

Interface(s

)

Subscription

Client

Query

Client

Subscription

Interface

Query

Interface

Client

List & Privileges

NAS Grid

Association

NAS Grid

Information

Repository

User

Interface(s

)

User

Interface(s

)

Developer

Client

Developer

Interface

Developer

Interface

Query

Broker

Developer

Registry

Software

Application Catalog

KEY

Interface

Component

Broker

Component

Storage

Component

KEY

Interface

Component

Broker

Component

Storage

Component

Publish/Subscribe

Centralized

Broker

Architecture

Concept

SWIM

Publish/Subscribe

Functions

And Interfaces

SWIM Function Hierarchy

Standards

-

Based

System Architecture

Framework for

Distributed

Processing System

Design

Workflow task

services

Shared processing

services

User processing

services

Model/Information

management

services

Human interaction

services

System

management

services

Communication

services

INPUT

Information Entry/

Collection from end

systems

MANAGEMENT

OUTPUT

Information Use &

Interaction with end

systems

SWIM

Push

Pull

Control

Transform

Publish

Information

Transformation

And Control

INPUT

Information Entry/

Collection from end

systems

MANAGEMENT

OUTPUT

Information Use &

Interaction with end

systems

SWIM

Push

Pull

Control

Transform

Publish

Information

Transformation

And Control

SWIM Publish

Client

Publish

SWIM Interface

Service

Interface

INFORMATION MANAGEMENT

Control

Push

Pull

Publish

Registration,

Catalog, & Broker

Service

SWIM Consumer

Client

SWIM Interface

Service

Interface

Pull

Push

Registration,

Catalog, & Broker

Service

INFORMATION INPUT

INFORMATION OUTPUT

Transform

Distributed Communications

& Networking Infrastructure (in blue)

BLUE ARROW: Management Information Flow

SWIM Repositories

SERVICE INFORMATION

FLOW

SWIM Publish

Client

Publish

SWIM Interface

Publish

SWIM Interface

Service

Interface

Service

Interface

INFORMATION MANAGEMENT

Control

Push

Pull

Publish

Registration,

Catalog, & Broker

Service

SWIM Consumer

Client

SWIM Interface

Service

Interface

Pull

Push

Registration,

Catalog, & Broker

Service

INFORMATION INPUT

INFORMATION OUTPUT

Transform

Distributed Communications

& Networking Infrastructure (in blue)

BLUE ARROW: Management Information Flow

SWIM Repositories

SERVICE INFORMATION

FLOW

User

Interface(s

)

Publication

Interface

Published

Information

Object Catalog

Publish

Client

Information

Object

Registry

Subscription

Registry/Broker

Subscription

Catalog

Publisher

Registry

Subscriber

Registry

Query User

Registry

Publisher

Status

Information

Object

Dictionary

Published

Information

Repositories

External

Input from

NAS

User

Interface(s

)

User

Interface(s

)

Subscription

Client

Query

Client

Subscription

Interface

Query

Interface

Client

List & Privileges

NAS Grid

Association

NAS Grid

Information

Repository

User

Interface(s

)

Developer

Client

Developer

Interface

Query

Broker

Developer

Registry

Software

Application Catalog

KEY

Interface

Component

Broker

Component

Storage

Component

User

Interface(s

)

Publication

Interface

Published

Information

Object Catalog

Publish

Client

Information

Object

Registry

Subscription

Registry/Broker

Subscription

Catalog

Publisher

Registry

Subscriber

Registry

Query User

Registry

Publisher

Status

Information

Object

Dictionary

Published

Information

Repositories

External

Input from

NAS

User

Interface(s

)

User

Interface(s

)

Subscription

Client

Query

Client

Subscription

Interface

Query

Interface

Client

List & Privileges

NAS Grid

Association

NAS Grid

Information

Repository

User

Interface(s

)

Developer

Client

Developer

Interface

Query

Broker

Developer

Registry

Software

Application Catalog

User

Interface(s

)

User

Interface(s

)

Publication

Interface

Published

Information

Object Catalog

Publish

Client

Information

Object

Registry

Information

Object

Registry

Subscription

Registry/Broker

Subscription

Catalog

Subscription

Catalog

Publisher

Registry

Publisher

Registry

Subscriber

Registry

Subscriber

Registry

Query User

Registry

Query User

Registry

Publisher

Status

Publisher

Status

Information

Object

Dictionary

Information

Object

Dictionary

Published

Information

Repositories

External

Input from

NAS

User

Interface(s

)

User

Interface(s

)

User

Interface(s

)

User

Interface(s

)

Subscription

Client

Query

Client

Subscription

Interface

Query

Interface

Client

List & Privileges

NAS Grid

Association

NAS Grid

Information

Repository

User

Interface(s

)

User

Interface(s

)

Developer

Client

Developer

Interface

Developer

Interface

Query

Broker

Developer

Registry

Software

Application Catalog

KEY

Interface

Component

Broker

Component

Storage

Component

KEY

Interface

Component

Broker

Component

Storage

Component

Publish/Subscribe

Centralized

Broker

Architecture

Concept

SWIM

Publish/Subscribe

Functions

And Interfaces

Figure 3‑6: Task 15 SWIM Architecture Concept Development

3.3.2.2 SWIM Data Concepts Overview

Subtask 17A analysis identified three high-level SWIM functions and more specific second and third level functions. This process also identified certain terms and concepts as key elements of the SWIM functional architecture. They include:

· SWIM Member

· SWIM Access and Access Method

· Common Data Model

· Information Object

Because the understanding of these terms and concepts is necessary for the understanding of SWIM architecture, these are defined in the following paragraphs.

A SWIM member is any NAS participant involved in the exchange of information via SWIM. It includes both consumers and producers of NAS information and services. SWIM members include NAS sensors, such as surveillance and weather radars; radar and flight data processing systems; decision support tools; flight decks; air traffic controllers; and flight operation centers.

SWIM access refers to the interface with SWIM. This could be for exchanging information (providing or accepting information), searching for available information, or for establishment or termination of information services. An access method is a pre-defined template including a standard set of information attributes that can be used to support connectivity between a SWIM member (user or resource) and SWIM. Access methods serve as templates of information that describe a pre-defined category of SWIM requests and participants (including, for example, NAS resources such as a Decision Support System used by NAS personnel such as traffic flow specialists) who exchange information via SWIM. Although specific access methods have not yet been developed for SWIM, they may include the following types of information:
· Information type/identity, or event type/identity

· Required SWIM information/services (e.g. a need to “subscribe” to certain SWIM information)

· Information or service provided (e.g. the capability to “publish” certain information to SWIM)

· Communication protocol(s) used to connect to SWIM

· Associated constraints (such as desired quality of service (QoS) level, required delivery time window, preferred source of information, data transfer rate, etc.)

· Security information (such as access privileges and dissemination limitations)

A common data model in SWIM is a NAS-wide pre-defined and agreed upon definition of data structures that make NAS information understandable by all SWIM members. This model is needed to support exchange of all types of NAS information by a range of SWIM members. It would include such information as:

· Data Source

· Data Destination (optional)

· Data Format

· Data Creation Time

· Data Expiration Time

· Searchable Attributes

The model structure may be implemented simply as a predefined “wrapper” (See Section 3.3.1 above), with encapsulated NAS information transferred via SWIM and extracted when it reaches its destination. Alternatively the common data model may be more sophisticated and address a NAS-wide agreement to organize NAS information in a uniform format (e.g., a piece of weather information is defined in one format regardless of its source) so it can be used uniformly throughout NAS.

A NAS information object represents a subset of NAS information using the common data model with defined searchable context or attributes (each attribute is associated with a value). A NAS information object is NAS information in the standardized format. Users would be provided with the capability to query SWIM to discover NAS information contained in the information objects. Information that describes these objects, called metadata, and associated values for the elements of data structure support techniques to locate and acquire that information. For example, in a Publish/Subscribe architecture, information is routed to SWIM members based on their announced needs, that is, a client requests information (subscribes) by identifying an information element tag and ranges of values that characterize the element. Whenever an information object that matches the request becomes available or is “published”, SWIM routes the information object to the client. In this way, publish and subscribe mechanisms act on information objects to enable dynamic information flows.

3.3.2.3 Identification of SWIM Components

Three steps were used to identify SWIM components. First, candidate components were identified based on SWIM enabling technologies. Next, alternative mappings of SWIM functions to SWIM components were investigated. Finally, SWIM components providing the most efficient mappings were selected. This process is addressed in the following subsections.

3.3.2.3.1 Identifying Candidate Components

The first step in the process of identifying SWIM components was to capture the types of components that could implement the technologies that enable SWIM. These candidate components are captured in Table 3‑6.

Table 3‑6: Candidate SWIM Components

	Technology
	Candidate SWIM Component

	Data Representation
	Data Model

Member Interface

	Wrapper Technologies
	Member Interface

	Middleware
	Pub/Sub Broker or Broker

Message Queue (Transaction Processing, etc.)

	Taxonomies/Ontologies
	Data Model

	Subscription Language
	Pub/Sub Broker or Broker

Message Queue(Event Handling)

IP router

Member Interface (Registration, Transaction Translation)

	Distributed database management
	Data Storage (Data Warehouse; Data Mart)

Network Management

	Data warehousing
	Data Storage (Data Warehouse)

	Access Control
	Member Interface (security polity implementation)

Pub/Sub Broker (user/data verification)

	PKI, Data Encryption, Non Repudiation
	Network Management

Member Interface (security polity implementation)

	Dynamic bandwidth management
	Network Management

	Assured delivery
	Network Management

Broker (Transaction Processing, Event Handling)

	Internet
	Network Management

	Distributed network management
	Network Management

	SNMP-based network management
	Network Management

	CORBA-based network management
	Network Management

	Source discovery
	Network Management

Member Interface (Member discovery)

	Source ID
	Network Management

The candidate components identified above accommodate multiple information sharing strategies. To select specific components for SWIM, consideration was given to information sharing strategies (from Section 3.3.2.1) as well as alternative groupings of SWIM functions (from Section 3.1.2.2).

3.3.2.3.2 Allocating SWIM Functionality to Components

The functional components of SWIM identified in the functional architecture are derived from SWIM operating concepts captured in the NAS CONOPs, the NAS Target System Description, and the SWIM CONUSE. These documents identify an approach to information exchange where:

· Information users do not require a priori knowledge of the information source

· Information is exchanged over dynamically established connections

· Information sharing services capability applies to all NAS data domains

These operating criteria drive architecture characteristics. First, a service-type or broker architecture is necessary (as compared to a client/server architecture, where, for example, software applications interact via specific interfaces). Section 3.3.2.1 details the recommendation of a publish/subscribe strategy for implementing a broker architecture. Second, to support the services identified for SWIM, a distributed processing capability for service brokering will likely be required. This issue is investigated further as part of the architecture development process.

To develop a complete set of SWIM components, SWIM functions were mapped to candidate components. This functional allocation process is illustrated in Figure 3‑7.

[image: image14.png]Functional Architeciure Area Ystem Under Consideration

Function = F
Component= C

Allecation of Funclions
to §ystem Components

Figure 4.5-5. Functional Partitioning to System Components

Figure 3‑7: Function Allocation Process

Two alternative allocations of SWIM functions to candidate components were identified. These alternatives both included a common allocation of Network Management functions to components. Specifically, the following functions map to the Network Manager (HW/SW component):

· Maintain Network Security

· Maintain Service Quality

· Manage Network Configurations

· Manage SWIM Accounts

· Manage Network Faults

The two alternatives differ in the allocation of Information Management functions to components. These allocations are captured in Table 3‑7.

Table 3‑7: Functional Partitioning: SWIM Information Management Functions to Components

	
	Component Allocation 1
	Component Allocation 2

	SWIM Function
	HW/SW
	Data
	Facility/ People
	HW/SW
	Data
	Facility/ People

	Manage SWIM Data
	MDR, IOR
	SWIM Data Model
	System Administrators
	MDR, IOR
	SWIM Data Model
	System Administrators

	Broker Service Requests
	Broker
	Information Object
	NAS Facilities
	Message Queue
	Information Object
	NAS Facilities

	Manage SWIM Interfaces
	Member Interface (to Broker)
	Information Object
	SWIM Member; NAS Facilities
	Messaging Member Interface
	Information Object
	SWIM Member; NAS Facilities

3.3.2.3.3 SWIM Component Description

Given the previous analyses of alternative information sharing strategies and the subsequent recommendation of a publish/subscribe concept, Component Allocation 1 has been selected for SWIM. This allocation includes the following components:

· Hardware/Software Components: Member-Interface, Broker, Data Storage, Network Management Interface, Network Manager, Metadata Registry (MDR), Information Object Repository (IOR)

· Data Components: SWIM data model

· Facility/People Components: SWIM Member, System Administrator, NAS Facilities

These components are described in following section and according to the two broad functional categories identified in Section 3.1.2.2: information management and network management.

3.3.2.3.3.1 Information Management Components

The information management hardware and software components consist of a member interface component, a broker component, and a data storage component. An architecture block diagram that captures these components and a first level component decomposition is provided in Figure 3‑8.

[image: image15.wmf]SWIM Information Management

SWIM Information Management

Member Interface

Interface S/W

Interface H/W (optional)

Registration

Transaction Translation

Security Policy

Implementation

Data Conversion

Member Discovery

Member Interface

Interface S/W

Interface H/W (optional)

Registration

Transaction Translation

Security Policy

Implementation

Data Conversion

Member Discovery

Data Storage

Data Mart

Data Warehouse

Data Storage

Broker

Broker S/W

Broker Server

Registration Maintenance

Transaction Processing

User/Data Verification

Broker Naming Service

Event Handling

Broker

Broker S/W

Broker Server

Registration Maintenance

Transaction Processing

User/Data Verification

Broker Naming Service

Event Handling

Data Mart

Data Warehouse

Data Storage

Data Model

Data Mart

Data Warehouse

Common data model

MDR

Data Warehouse

IOR

SWIM Information Management

SWIM Information Management

Member Interface

Interface S/W

Interface H/W (optional)

Registration

Transaction Translation

Security Policy

Implementation

Data Conversion

Member Discovery

Member Interface

Interface S/W

Interface H/W (optional)

Registration

Transaction Translation

Security Policy

Implementation

Data Conversion

Member Discovery

Member Interface

Interface S/W

Interface H/W (optional)

Registration

Transaction Translation

Security Policy

Implementation

Data Conversion

Member Discovery

Member Interface

Interface S/W

Interface H/W (optional)

Registration

Transaction Translation

Security Policy

Implementation

Data Conversion

Member Discovery

Data Storage

Data Mart

Data Warehouse

Data Storage

Broker

Broker S/W

Broker Server

Registration Maintenance

Transaction Processing

User/Data Verification

Broker Naming Service

Event Handling

Broker

Broker S/W

Broker Server

Registration Maintenance

Transaction Processing

User/Data Verification

Broker Naming Service

Event Handling

Broker

Broker S/W

Broker Server

Registration Maintenance

Transaction Processing

User/Data Verification

Broker Naming Service

Event Handling

Broker

Broker S/W

Broker Server

Registration Maintenance

Transaction Processing

User/Data Verification

Broker Naming Service

Event Handling

Data Mart

Data Warehouse

Data Storage

Data Model

Data Mart

Data Warehouse

Common data model

MDR

Data Warehouse

IOR

Data Warehouse

IOR

Figure 3‑8: SWIM Information Management Component Architecture Block Diagram

The member interface component provides an entry point for SWIM members to access to SWIM. Its main functions are registering members and data to be published (for data provider members); providing SWIM security checks such as authenticating and authorizing users; and controlling SWIM data access. For publishers, it converts data from the publisher’s data format to a SWIM common data format and creates information objects; for subscribers, it converts the received data in common data format back to the subscriber’s data format. This component also conducts transaction translation for SWIM members to request registration, publish, subscribe, query, and other SWIM service operations. Finally, the member interface component provides the member discovery function for members to accurately express their service requests.

The broker component interfaces with the member interface components to receive and process member requests such as publish, subscribe, and query. It matches the published information objects with the subscribers who have subscribed to the data. Typically, this is an asynchronous process. The broker component also searches for matches to published information objects in SWIM data marts or data warehouses for members who query for the data.

Broker components can be distributed according to several alternative topologies (see Section 4.5.3). Distributed brokers would exchange their subscriber subscription information so that published information objects could be matched to all distributed subscribers.

The data storage component would consist of two types: data marts, designed for short-term storage and fast retrieval of data; and data warehouses, designed for long-term archiving of data. Both data marts and data warehouses would interface to the broker components as special subscribers, and also would provide database query results in response to broker queries for specific information. What needs to be stored in data marts versus data warehouses and how long archived data should be kept remain as policy and implementation issues.

The data model component includes the common data model, IOR (Information Object Repository) and MDR (Metadata Registry). SWIM data would be represented by an information object, which is defined in accordance with the SWIM common data model. An IOR is a system that contains the instances of information objects. Typically, it is a software application that uses a database to store and retrieve records that describe data items. A MDR is a system that contains information describing the format, structure, and definitions of data (rather than holding actual ‘filled-out’ data). Like the IOR, it is often implemented as a software application that uses a database to store and retrieve data as well as document formats, data definitions, and data relationships.

A schematic block diagram for the SWIM information management hardware and software components is provided as Figure 3‑9.

[image: image16.wmf]Storage

Member

Interface

Registration

Transaction

Translation

Security Policy

Implementation

Data Conversion

Member

Interface

Registration

Transaction

Translation

Security Policy

Implementation

Data Conversion

Member

Interface

Registration

Transaction

Translation

Security Policy

Implementation

Data Conversion

Member

Interface

Registration

Transaction

Translation

Security Policy

Implementation

Data Conversion

Member

Interface

Registration

Transaction

Translation

Security Policy

Implementation

Data Conversion

Broker

Registration

Maintenance

Transaction

Processing

User/Data

Verification

Broker Naming

Service

Event Handling

Data

Warehouse

Data Mart

GUI

SWIM

SWIM

Members

Member

Discovery

Data Model

MDR

MDR

IOR

IOR

Figure 3‑9: SWIM Information Management Component Schematic Diagram (High-Level)

Facility components for information management may include a range of NAS facilities. Information management SWIM functionality may be accommodated in ARTCCs, TRACONs, ATCTs, Remote Equipment Sites, ATCSCC, AFSSs, Regional Offices, and the VNTSC. In addition to NAS facilities, SWIM member interface functionality may be implemented at SWIM member facilities including FOCs, Internet Access locations, in the cockpit, and government facilities.

Major people components associated with information functionality are end users or SWIM members at the member side who access SWIM via the member interface and request SWIM core services such as publish and subscribe and information system administrators, who are responsible for maintaining the MDR and IOR for setup and updates as well as for implementing SWIM security policies. The information system administrators include database administrators (DBAs) who are responsible for maintaining the operations of SWIM data storage devices.

3.3.2.3.3.2 Network Management Components

The network management hardware and software components consist of a network management interface component, network management component(s), and a security component. An architecture block diagram that captures these components and a first level of component decomposition is provided in Figure 3‑10.

[image: image17.wmf]SWIM Network Management

Network Manager Interface

Network Manager

Security

Interface S/W

Interface H/W (optional)

Manager S/W

Manager Server

Fault Management

Configuration Management

Account Management

Performance Management

Security Management

SWIM Network Management

Network Manager Interface

Network Manager

Security

Interface S/W

Interface H/W (optional)

Manager S/W

Manager Server

Fault Management

Configuration Management

Account Management

Performance Management

Security Management

Figure 3‑10: SWIM Network Management Component Architecture Block Diagram

The network management component will interface to the FAA communications infrastructure, such as the FTI, through a COTS management platform. In the case of a Simple Network Management Protocol (SNMP)-based network manager, this platform would facilitate the invocation of network management commands (e.g., get, set, trap) and management information base (MIB) access. However, for more efficient network management operation, this management platform would be supported by rules-based processes that are tailored to the unique characteristics and functions of SWIM, the FAA communications infrastructure, and the NAS. Using monitored network parameters, these processes would apply FAA policies/thresholds; support automated detection and diagnosis of conditions violating FAA policies or exceeding thresholds; and perform basic operation, maintenance or configuration network management functions.

The network management component would be distributed among multiple network managers, as necessary. Therefore, each network management station would include a distribution agent to coordinate with other network management stations and support failover functions.

Additionally, an interface to a network simulation tool would enable the network manager to test the short-term and long-term, as well as direct and indirect, performance effects of potential network parameter modifications before implementing them in the actual network. The interface to the simulation tool would automatically update the network model with the latest network parameters, and the parameter modifications under consideration could be incorporated either manually by the network manager operator through a human-machine interface or automatically by the specialized NM support processes.

A schematic block diagram for the SWIM information management hardware and software components is provided as Figure 3‑11.

[image: image18.wmf]FTI

SWIM Members

SWIM Members

Mgmt Agents

SWIM Network

Managers

Managed Resources

Human

-

Machine Interface

Performance Mgmt

–

Identify

and diagnose system

degradations and bottlenecks

Accounting Mgmt

–

Maintain

usage logs, track usage trends,

and apply resource usage

policies

Security Mgmt

–

Generate

and distribute encryption and

authentication configurations

per set policies

Configuration Mgmt

–

Monitor and modify system

and component configurations

for optimal performance

Fault Mgmt

–

Identify,

correlate and

diagnose alarms

and failures

COTS Management Platform

Invoke NM commands: get, set, trap

Distribution

Agent

Coordinate NM

distribution and

failover

Simulation

Tool

Assess impacts of

configuration

modifications

Network Parameter Acquisition

Support

Processes

Network Mgmt

Interface at each

managed resource

Figure 3‑11: SWIM Network Management Component Schematic Diagram (High-Level)

The SWIM data model components associated with network management relate to the actual network parameters acquired by management applications. Similar to the information management, the facility component for network management may include a range of NAS facilities. This functionality may be accommodated in ARTCCs, TRACONs, ATCTs, Remote Equipment Sites, ATCSCC, AFSS, and NAS network operation centers. Finally, the people components associated with network management include network administrators who address system administration, security management, configuration management, and account management.

3.3.3 SWIM Interface and Performance Characteristics

3.3.3.1 SWIM Interface Characteristics

SWIM interfaces include interfaces both internal and external to the NAS. These interfaces are summarized as follows:

· SWIM External Interfaces

· Interface to the aircraft

· Telco/network interface to airline Flight Operation Center (FOC) offices

· Telco/network interfaces to Civil Aviation Authorities (CAAs)

· Includes interface to the Aeronautical Telecommunication Network (ATN)

· Telco/network interfaces to military, law enforcement and other US agencies

· Telco/network interface to Internet

· SWIM Internal Interfaces

· Interface to the FAA Telecommunication Infrastructure (FTI)

· Telco/network interfaces to FAA sensors/systems

· Directly or via server/application gateway

· Interface to the NAS Infrastructure Management System (NIMS)

· Interface to the Aeronautical Data Telecommunications Network (ADTN) and FAA Intranet

SWIM services may be specific to particular types of NAS data (e.g. surveillance, weather, flight management, aeronautical) or to specific types of NAS facilities (e.g. Air Route Traffic Control Centers (ARTCCs), Terminal Radar Approach Control Facilities (TRACONs), Air Traffic Control Towers (ATCTs), etc). The SWIM member interface component should provide an interface to SWIM requiring no modification to legacy applications (e.g., platform, language, and location independence). Options for the SWIM member interface function are investigated in Section 4.3. They include:

· Non-intrusive installation of member interface objects

· Local access to member interface as standalone SWIM proxy

· Remote access to member interface as standalone SWIM proxy

In order to identify the interface characteristics of SWIM, SWIM external components and internal components need to be identified. Internal components are the software and hardware components needed to fulfill SWIM functionalities. They have already been identified and have been presented in Section 3.3.2.3.3. External components are any entities that participate as end users or providers in the distribution, or exchange of information via SWIM. An external component can be either a source or a sink of the shared NAS information and services. External components can be further categorized as:

· SWIM Source Components -- Sources of SWIM Information

· Legacy NAS Sensors: Sensors providing raw surveillance and weather information (they interface to SWIM either via a software functionality or an adapter/gateway)

· NAS Automation/Processing Centers (e.g., ATC systems for surveillance and flight data processing)

· Existing NAS databases (e.g., NASR, NOTAM database)

· Pools of data that not currently accessible via a database

· Non-FAA Sources (e.g., government agencies)

· Others

· SWIM Sink Components – Consumers of SWIM Information

· NAS Processing Centers/Applications (Can be both a source and a sink)

· NAS Databases (Can be both a source and a sink)

· Non-FAA sources (Can be both a source and a sink)

Some analytical work has been performed to begin categorizing information related to NAS sensors and automation/processing centers. Specifically, these sensors and automation/processing systems have been categorized into five domains: surveillance, weather, aeronautical information, resource management and flight information. These sensor and automation/processing systems are potential SWIM members. Analytical work in the following areas could influence SWIM architecture design in regard to identification of specific SWIM members and interfaces, providing input information for evaluation of SWIM broker topologies, and providing input information for evaluation of SWIM processing patterns. Some of these efforts have already been performed and some still need to be worked further.

· Identifying potential SWIM users and data/service providers (data sources, data sinks) (A general list of all the sensors/systems both internal and external to NAS have been identified and presented in Appendix D)

· Identifying SWIM information flows (data flow between sources and sinks) (This work has been performed and summarized in the CNS-ATM Task 15 report)

· Identifying the distributions of external components (to support physical architecture design decisions)

· Identifying the SWIM traffic characteristics (Related work has been done in CNS-ATM Task 12)

· Types of information requested, frequency, and latency requests/requirements

· Types of information distributed, frequency, and latency request/requirements

· Traffic volume.

3.3.3.2 SWIM Performance Characteristics

NAS-SR-1000 identifies performance requirements of NAS services that would be enabled by SWIM and therefore imposes performance requirements on SWIM. Previous studies have investigated performance implications for certain aspects of NAS architecture evolution. For example, CNS-ATM Task 12 analyzed existing NAS communications performance requirements and assessed the ability of these requirements to sufficiently specify the performance of new communications architectures. Additionally, CNS-ATM Task 15 (Subtask H) identified and analyzed all existing NAS system level performance requirements from NAS-SR-1000, NAS-SS-1000, and NAS-DD-1000. The objective of an ongoing analysis is the identification of a complete and validated set of NAS-level performance requirements that apply to the NAS service architecture. As part of that effort, SWIM concepts are being considered and draft NAS-level information performance criteria/requirements are being developed in the context of a SWIM implementation.

Performance requirements specific to SWIM as a NAS component should be addressed at the subsystem level. In other words, performance requirements for individual SWIM components need to be developed. As these subsystem requirements are developed, the NAS-level requirements that impose constraints on the subsystem requirements need to be considered. Table 3‑8 provides sample NAS-SR-1000 requirements that provide performance constraints on SWIM.

Table 3‑8: Sample NAS-Level Performance Requirements Applicable to SWIM

	Section

Number
	NAS-SR-1000 Requirement
	Perfor-

mance?
	Relation

to SWIM Requirements

	3.1.1.G.2
	Hazardous and routine weather information shall be presented to the specialist within 3.0 seconds of a request (mean response time).
	True
	Performance Constraint

	3.1.1.G.3
	Hazardous weather information shall be available to specialists and users within 2 minutes of identification of the hazardous weather phenomenon, and shall be maintained current locally to within 2 minutes. Hazardous weather information shall be maintained current nationally to within 30 minutes or less as conditions warrant thereafter, until the hazard has dissipated.(Essential)
	True
	Performance

Constraint

	3.1.1.G.4
	Terminal area hazardous weather information shall be available to specialists and users within one minute of detection and shall be current to within one minute thereafter, until the hazard has moved out of the terminal area or dissipated.
	True
	Performance Constraint

	3.1.1.H.1
	Specialist access to weather information shall be provided with a mean response time of 3.0 seconds from the time a request for information is made.
	True
	Performance Constraint

	3.1.1.H.3
	Once a user has gained access to the NAS, weather information shall be provided with a mean response time of 3.0 seconds from the time a request for information is made.
	True
	Performance Constraint

	3.1.1.H.4
	The NAS is required to meet the expected demand for weather requests (e.g., pilot briefings) during times of peak demand.(Essential)
	True
	Performance

Constraint

	3.1.1.I
	Weather information shall be continuously (24 hours a day) accessible to users with or without the aid of a specialist.
	True
	Performance Constraint

	3.1.2.F.2
	The time from initiation of a request for aeronautical information by a user and receipt of the requested information shall not exceed 10 seconds.
	True
	Performance Constraint

	3.1.2.B
	Aeronautical information shall be continuously (24 hours a day) accessible to specialists.
	True
	Performance Constraint

	3.1.2.C
	Aeronautical information shall be continuously (24 hours a day) accessible to users upon request with or without the aid of specialists.
	True
	Performance Constraint

	3.1.2.F.1
	The time from initiation of a request for aeronautical information by a specialist and receipt of the requested information shall not exceed 10 seconds.
	True
	Performance Constraint

	3.1.3.B.1
	Current and forecast weather data shall be available within 10 seconds of a specialist’s request.
	True
	Performance Constraint

	3.1.3.C.1
	Users shall receive requested flow control and delay advisory information within 6 seconds of a request. ATCCC specialists and local traffic management coordinators shall receive requested information within 10 seconds of a request.
	True
	Performance Constraint

	3.1.4.H.1
	The NAS-provided interfaces shall have sufficient capacity for users to be able to gain direct access within 5 seconds after the connection has been made.(Routine)
	True
	Performance Constraint

	3.1.4.H.2
	The NAS shall be capable of validating and processing proposed flight plans and amendments to proposed flight plans and responding to the user/specialist within 10 seconds (99th percentile) of the input.
	True
	Performance Constraint

	3.1.10.B.1
	The NAS shall provide the capability to receive and process requests from military users for special movement activities of military aircraft within 24 hours of the user’s request.(Routine)
	True
	Performance Constraint

	3.1.10.B.2
	The NAS shall be capable of receiving and responding immediately to requests for airspace reservations [i.e., altitude reservation requests (ALTRV) at emergency order of precedence (class three or above)].(Routine)
	True
	Performance Constraint

3.3.4 Allocation of SWIM Functions/Requirements to Components and Interfaces

The relationships between defined SWIM functionality and SWIM components, and between SWIM requirements and SWIM components are captured in the functionality compliance matrix and requirements compliance matrix, respectively. These matrices are provided in Table 3‑9 and Table 3‑10.

Table 3‑9 shows the allocation of the top two levels SWIM functionality to high level SWIM hardware and software components. Lower level SWIM functions can be allocated to specific elements of the SWIM components as they become defined.

Table 3‑9: SWIM Functionality Compliance Matrix

	Function
	SWIM COMPONENT

	LEVEL 1

	1.0
	Information Management
	Member Interface

	
	
	Broker

	
	
	Data Storage

	2.0
	Network Management
	Network manager interface

	
	
	Network Manager (SW and HW)

	
	
	Security

	LEVEL 2

	1.1
	Manage SWIM Interfaces
	Interface SW

	
	
	Interface HW

	1.2
	Broker Service Requests
	Broker SW

	
	
	Broker Server

	1.3
	Manage SWIM Data
	SWIM Common data model

	
	
	MDR

	
	
	IOR

	1.4
	Manage Data Storage
	Data mart

	
	
	Data warehouse

	2.1
	Maintain Network Security
	Security

	2.2
	Manage SWIM Accounts
	Manager SW (account management)

	2.3
	Manage Network Configurations
	Manager SW (configuration management)

	2.4
	Maintain Performance
	Manager SW (configuration management)

	2.5
	Manage Network Faults
	Manager SW (fault management)

Table 3‑10 shows the allocation of NAS-level SWIM requirements (from Task 17B) to first level SWIM components. In some cases, requirements have been mapped to more than one SWIM component. For example, Requirement 7 “The NAS shall process user and resource information requests” is mapped to both the ‘member interface’ component as well as to the ‘broker’ component. This is necessary to accommodate first the processing of a user requests by member interface and second, the further processing of the request by the broker. Additional allocation of requirements to components will be included as part of the final report for Task 17.

Table 3‑10: NAS-level SWIM Requirements Compliance Matrix
	Num
	NAS Level Requirement Statement
	SWIM Component

	“Manage SWIM Service Interface” Requirements

	1
	The NAS shall define standard information access types for all SWIM users and resources.
	Data model

	2
	The NAS shall authenticate users and resources who try to access SWIM
	Member Interface

	3
	The NAS shall assign different security levels to information to be exchanged [over SWIM]
	Member Interface

	4
	The NAS shall assign authenticated users and resources specific access right to the different levels of information to be exchanged [over SWIM]
	Member Interface

	5
	The NAS shall accept users’ and resources’ requests for context sensitive information [over SWIM]
	Member Interface

	“Manage SWIM Operations” Requirements

	6
	The NAS shall control SWIM security control information
	Security

	7
	The NAS shall process user and resource information requests
	Member Interface, Broker

	8
	Upon a standing request, the NAS shall automatically deliver updated context sensitive information to authorized requesting users and resources
	Broker

	9
	Upon a standing request, the NAS shall automatically deliver real-time information on time [over SWIM] to authorized requesting users and resources
	Broker

	10
	Upon a one-time request, the NAS shall deliver context sensitive information to authorized requesting users and resources
	Broker

	11
	The NAS shall automatically establish source and user connections [over SWIM] for delivery of information
	Broker

	12
	The NAS shall transport dynamically changing information
	Broker

	13
	The NAS shall transport static (non-changing) information
	Broker

	14
	The NAS shall transport scheduled information
	Broker

	15
	The NAS shall be capable of delivering NAS information to multiple users and resources [over SWIM]
	Broker

	16
	The NAS shall use common geographic reference attributes for information transported [over SWIM]
	Data model

	17
	The NAS shall use common data attributes for information transported [over SWIM]
	Data model

	18
	The NAS shall manage SWIM resources.
	Network Manager

	19
	The NAS shall make NAS resource information accessible [via SWIM]
	Network Manager

	20
	The NAS shall make NAS management information accessible [via SWIM]
	Network Manager

	21
	The NAS shall adapt to dynamic changes in NAS information providers and users
	Network Manager

	22
	The NAS shall monitor network Quality of Service parameters [for SWIM]
	Network Manager

	23
	The NAS shall maintain network Quality of Service [of SWIM]
	Network Manager

	24
	Upon standing request, the NAS shall provide the capability to automatically collect information [through SWIM]
	Network Manager

	25
	The NAS shall cache information exchanged [over SWIM]
	Network Manager

	26
	The NAS shall archive NAS information exchanged [over SWIM]
	Data Storage

	27
	The NAS shall provide means for authorized users and resources to access NAS information databases
	Data Storage

	28
	The NAS shall maintain NAS information databases
	Data Storage

	“Manage SWIM Data” Requirements

	29
	The NAS shall define a common data model for information to be exchanged [over SWIM]
	Data model

	30
	The NAS shall establish a common geographical and time reference for information to be exchanged [over SWIM]
	Data model

	31
	The NAS shall register NAS resources [in the SWIM environment] using a common geographical reference
	Data model

	32
	The NAS shall define common searchable attributes for NAS information
	Data model

	33
	The NAS shall maintain a common data model
	Data model

3.3.5 Identification of Design Tradeoffs

Using the physical architecture framework defined in Section 3.3.2.3.3, the design of a developmental level architecture can begin. This process involves identification of design tradeoffs specific to the components and interfaces defined for SWIM. These design tradeoffs can support the development of architecture alternatives, refinement of the physical architecture and/or the identification of implementation options. Design tradeoffs specific to the identified SWIM components and interfaces investigated as part of this analysis are summarized in Table 3‑11.

Table 3‑11: Summary of Investigated Design Trade-offs for SWIM

	Trade-Off Designator
	Description
	Relationship to Physical Architecture
	Analysis Methodologies

	Data Representation and Management
	Investigation of the definition of the SWIM data model; definition of SWM metadata; defining a SWIM subscription language, etc.
	Architecture Refinement
	Analysis

	Member Interface Integration Options
	Identification and comparison of options for implementing the SWIM member interface
	Implementation Option
	Analysis

	SWIM Processing Options
	Investigation and comparison of different means of accommodating SWIM processes (registration, subscribe, publish, query, and unsubscribe); Options include processing with a broker, without a broker or a hybrid of both
	Supports identification of Architecture Alternatives
	Analysis; Simulation

	Broker Distribution
	Identification of options for distributing the broker domain when there are multiple brokers in SWIM
	Supports identification of Architecture Alternatives
	Analysis; Simulation

	Data Granularity
	Investigation of the level of detail available to a subscriber for subscribing/querying to SWIM as well as for data filtering
	Supports identification of Architecture Alternatives
	Analysis

	Data Storage Method
	Investigation of the use of data marts vs data warehouses as well as what data (and associated format) is applicable
	Architecture Refinement
	Analysis

	Network Management Alternatives
	Comparison of different network management protocols options for SWIM (e.g. SNMP vs. CORBA-based)
	Implementation Option
	Analysis

	Security Considerations
	Identification of security issues for SWIM
	Architecture Refinement
	Analysis

	Technology/Implementation Options
	Evaluation of options for integrating the SWIM member interface with actual FAA nodes/systems
	Implementation Option
	Analysis

The resolution of these design issues has three impacts on SWIM physical architecture. Some design issues support identification of architecture alternatives (meaning that the physical components and their relationships will be different), some design issues will play a role as SWIM architecture design refinement, and some design issues are simply implementation options.

Data granularity, broker distribution and processing patterns support identification of Architecture Alternatives. For instance, the selection of a particular data granularity impacts the decision of whether to use content-based networking to support content-based query capability or to use current IP-based networking for subject-based query capability. Decisions on broker distribution (topology) will affect where brokers reside, how legacy systems/centers interface to brokers, and the relationships between brokers. Selection of processing patterns impacts the flow of data traffic and the roles of brokers and publishers or subscribers.

Decisions on data representation, data storage and security probably will not result in major architecture component and relationship change, rather, they should fine-tune the architecture with different design details. For instance, data representation decisions affect the actual information object format to be published; it affects the way that data consumers discover the data. Choices of data storage may result in different data formats in the data marts and data warehouses as well as different interface protocols between broker and data storage elements. Decisions on security mechanisms will affect how security policies are implemented in the SWIM architecture.

Member interface integration, network management and technology-supported implementation are all implementation options. For instance, a legacy system (a potential SWIM member) could either implement a member interface by installing a proxy software package, or a standalone member interface server could be set up for the legacy system. These are implementation decisions. Network management could either be SNMP-based or CORBA-based depending on which implementation is more beneficial to FAA. SWIM can be implemented by various technology/COTS support. Choices on technology/COTS support are implementation issues.

These issues can be evaluated studied through analysis and/or simulation. Detailed analyses of these design issues are captured in Section 4. Processing patterns and broker topology options are evaluated both by analysis and through OPNET simulation. Representative OPNET models have been simulated with NAS realistic traffic characteristics. Simulation results will help make decisions on the trades of these two issues. Task 17 simulation efforts have been performed in Subtask 17E.

4. Physical Architecture Design Tradeoffs

4.1 Introduction

This section provides an investigation of the SWIM architecture design tradeoffs introduced in Section 3.3.5. Most of these tradeoffs have been investigated to develop refined physical architectures for SWIM. Other tradeoffs address implementation choices for SWIM. The design topics that have been investigated for Subtask 17C include the following:

· Data Representation and Management (Section 4.2)

· Member Access Options (Section 4.3)

· SWIM Processing Options (Section 4.4)

· Broker Distribution (Topology) (Section 4.5)

· Data Granularity (Section 4.6)

· Data Storage Method (Section 4.7)

· Network Management Alternatives (Section 4.8)

· Security Considerations (Section 4.9)

· Technology/Implementation Options (Section 4.10)

In general, each design topic investigation includes a definition of the topic, identification of issues/constraints specific to the design trade-off, alternative solutions for SWIM and a summarized definition of the tradeoff solution space. The solution space summary includes a listing of factors that affect the selection of a particular tradeoff solution as well as a rating of the relative impact of the trade-off on the SWIM architecture design.

Figure 4‑1 illustrates the design topics addressed in the context of the SWIM architecture framework developed in Section 3.3.2.3.3.

[image: image19.wmf]Broker

Registration

Maintenance

Transaction

Processing

User/Data

Verification

Broker

Naming

Service

Data

Warehouse

Data Mart

Member

Interface

Registration

Transaction

Translation

Security

Policy

Implementati

on

Data

Conversion

Member

Interface

Registration

Transaction

Translation

Security

Policy

Implementati

on

Data

Conversion

Member

Interface

Registration

Transaction

Translation

Security Policy

Implementatio

n

Data

Conversion

GUI

SWIM

Broker

Registration

Maintenance

Transaction

Processing

User/Data

Verification

Broker Naming

Service

Event Handling

Data Representation:

–

Information Object

–

Common Data Model

–

Metadata and XML

Data Storage:

–

Data Marts /

RDBMS

–

Data Warehouse /

OODBMS

Topology

Options

NM Interface

Options

Data

Granularity

Options

Information Management (IM)

Network Management (NM)

Interface

Integration

Options

Security Mechanism

Options:

–

SCAP

–

PP

–

ISS

Network

Management

Interface

Network

Management

Interface

Network

Management

Interface

Network

Manager

Fault Mgmt

Config

Mgmt

Security Mgmt

Acct Mgmt

Perform Mgmt

Network

Manager

Fault Mgmt

Config

Mgmt

Security Mgmt

Acct Mgmt

Perform Mgmt

NM Options:

–

SNMP

–

GIOP (CORBA)

SWIM Process

Options

NM Architecture

Options

SWIM

Members

Broker

Registration

Maintenance

Transaction

Processing

User/Data

Verification

Broker

Naming

Service

Broker

Registration

Maintenance

Transaction

Processing

User/Data

Verification

Broker

Naming

Service

Data

Warehouse

Data

Warehouse

Data Mart

Data Mart

Member

Interface

Registration

Transaction

Translation

Security

Policy

Implementati

on

Data

Conversion

Member

Interface

Registration

Transaction

Translation

Security

Policy

Implementati

on

Data

Conversion

Member

Interface

Registration

Transaction

Translation

Security

Policy

Implementati

on

Data

Conversion

Member

Interface

Registration

Transaction

Translation

Security

Policy

Implementati

on

Data

Conversion

Member

Interface

Registration

Transaction

Translation

Security Policy

Implementatio

n

Data

Conversion

GUI

SWIM

Broker

Registration

Maintenance

Transaction

Processing

User/Data

Verification

Broker Naming

Service

Event Handling

Data Representation:

–

Information Object

–

Common Data Model

–

Metadata and XML

Data Storage:

–

Data Marts /

RDBMS

–

Data Warehouse /

OODBMS

Topology

Options

Topology

Options

NM Interface

Options

NM Interface

Options

Data

Granularity

Options

Data

Granularity

Options

Information Management (IM)

Network Management (NM)

Interface

Integration

Options

Interface

Integration

Options

Security Mechanism

Options:

–

SCAP

–

PP

–

ISS

Security Mechanism

Options:

–

SCAP

–

PP

–

ISS

Network

Management

Interface

Network

Management

Interface

Network

Management

Interface

Network

Manager

Fault Mgmt

Config

Mgmt

Security Mgmt

Acct Mgmt

Perform Mgmt

Network

Manager

Fault Mgmt

Config

Mgmt

Security Mgmt

Acct Mgmt

Perform Mgmt

Network

Manager

Fault Mgmt

Config

Mgmt

Security Mgmt

Acct Mgmt

Perform Mgmt

Network

Manager

Fault Mgmt

Config

Mgmt

Security Mgmt

Acct Mgmt

Perform Mgmt

NM Options:

–

SNMP

–

GIOP (CORBA)

SWIM Process

Options

SWIM Process

Options

NM Architecture

Options

NM Architecture

Options

SWIM

Members

Figure 4‑1: SWIM Architecture Design Issues

The results of the investigation of these design topics has led to the definition of more detailed alternative candidate physical architectures for SWIM (see Section 5). As part of this process, and as an introduction to the design topic discussions, it is of interest to identify the interrelationships of these design topics. For example, the selection of a processing methodology for SWIM influences the broker topology analysis. Figure 4‑2 captures the interdependency between the SWIM design topics addressed in this study and the recommend order of resolution for these design topics.

[image: image20.wmf]Data Concept and

Data Representation

Issues

Interface Integration

Options

Broker Topology

Options

Data Granularity

Options

Implementation

Options

NM Options

Security Mechanisms

SWIM Process

Options

Data Storage Issues

1

2

3

4

High

Decision Making Priority Steps

Low

Data Concept and

Data Representation

Issues

Interface Integration

Options

Broker Topology

Options

Data Granularity

Options

Implementation

Options

NM Options

Security Mechanisms

SWIM Process

Options

Data Storage Issues

1

2

3

4

High

Decision Making Priority Steps

Low

Figure 4‑2: SWIM Design Topic Dependence and Order of Resolution

Data Concept and Data Representation issues relate to the SWIM common data model, associated metadata to be included in information objects, and the corresponding subscription language. This topic and the Data Granularity topic are mutually dependent because data granularity is affected by the design of the data model, metadata attributes, and types of subscriptions that can be submitted and processed. Conversely, data models and data representations are affected by the decision of data granularity selection. If SWIM is determined to need a very fine granularity for data queries and subscriptions, then content-based networking may be necessary, which will affect the design of data model and its representations.

The resolution of the data concept and data representation issues also affects the selection of member interface integration option, because some data extracting/converting functions may force the need for significant computing power and require a standalone interface server to provide the required services.

The data granularity decision also influences the topology of brokers. For instance, when fine data granularity is chosen, more information objects will be published, increasing the burden on brokers to filter out unwanted data while matching subscriptions. Thus multiple brokers may be needed to share the duties. Broker Topology is then affected.

Selection of SWIM Processes will have impact on broker topology as well. For instance, the topology for the “without broker” case would be different from the topology for the “with broker” case. Details are discussed in Section 4.4 and alternative architectures can be found in Section 5.
Selection of SWIM processes also affects Data Storage issues. Different ways of processing real-time/stream data affect how this data will be stored and in what format (e.g. Information Object or raw data format).

Decisions on broker topology will affect the selection of Interface Integration. With a topology design with numerous local brokers, the proxy software probably would be able to accommodate all member requests (publish, subscribe and etc.); however, with fewer brokers, a standalone interface server may be required to provide more powerful interface services.

All these design issues affect the implementation options. Principal objectives for SWIM implementation include interoperability and scalability, as well as meeting SWIM performance requirements. Resolution of the design issues impacts the degree to which these objectives can be met.

4.2 SWIM Data Representation and Management

SWIM makes the concept of managing information at the NAS system level a reality. This includes the organization and standardization of NAS information to be exchanged over SWIM; the acquisition of exchanged information into SWIM; the dissemination (sharing) of needed information to target SWIM members; and the control, monitoring, preservation, and disposition of the exchanged NAS information. The concepts of SWIM data representation and management are key to the success of the SWIM enterprise and address the ultimate goal of SWIM – to deliver the right information at the right time. The timeliness, accuracy, understandability, availability, and security of the data are the goals of SWIM data management
. This section describes various elements of SWIM information representation and management concepts including:

· Metadata Concepts (Section 4.2.1.1)

· Processing Metadata (Section 4.2.1.2)

· Sample Information Object Description (XML Schema) (Section 4.2.1.3)

· Subscription Language Operations on Information Objects (Section 4.2.1.4)

· SWIM Data Management Goals (Section 4.2.1.5)

Following this discussion is a look at design issues specific to data representation (Section 4.2.2) and a summary of the trade-off solution space relative to data representation (Section 4.2.3).

4.2.1 Elements of SWIM Data Representation and Management

4.2.1.1 Metadata Concept

Metadata is defined as data that describes other data. The Committee on Institutional Cooperation
 defines three types of metadata:

1. Descriptive metadata: describe the intellectual content and associations of a document or resource in a way that facilitates search, identification and collocation of information contained within or exemplified by the resource.

2. Structural metadata: define the physical structure of a complex digital entity to facilitate navigation, information retrieval, and display.

3. Administrative metadata: encompass a variety of data related to viewing, interpretation, use, and management of digital objects over time.

In this study, the focus is on structural metadata used in SWIM to define the structural features of NAS data elements and capture the relationships among NAS data elements. This metadata definition includes data attributes and content of data elements that are used to support SWIM data object search features. Specifically, this metadata allows users and application programs to quickly search for and identify data elements that map to their expressed attributes and content of interest.

4.2.1.1.1 Metadata and the SWIM Information Object

A NAS information object is NAS information in a standardized format. There are two components of an information object, namely the data object (the payload) and structural information that describes the data object (the metadata). The data object is created by classifying and categorizing NAS data to a desired level of detail. The data object is the information being distributed and may range from simple numerals, to text, to an entire digital video file. As noted above, the structure information that describes the data object is the metadata. The pairing of metadata with the payload in an information object makes it possible for the SWIM brokering function to match ongoing requests (subscriptions) and future requests (queries) for data to the information object or objects that satisfy these requests.

As described in Section 3.3.2.2, the information object is the basic unit of information management within the SWIM. It is created by publisher members, disseminated to subscriber members and can be archived to support future queries.

Also defined in Section 3.3.2.2, a common data model in SWIM is a NAS-wide pre-defined and agreed upon definition of data structures (organized NAS data hierarchies) that make NAS information understandable by all SWIM members. A common data model agreed to by the entire SWIM user community is designed and information objects are derived based on the model. The structural information of the common data model is captured by the metadata in an information object. A data element such as a date has many different representations in today’s NAS, the FAA has already established an FAA Data Registry (FDR) that lists approved data standards in FAA-STD-060 format. Standardized data items have been listed with a preferred name, an identifier, data type (e.g., “string”), a definition, permissible values with value meanings, interchange format, maximum length, and unit of measure with minimum and maximum values where applicable. Each standard data element is listed with a steward organization, such as the FAA’s Aeronautical Information Division, ATA-100. While FDR development is ongoing, only a few hundred data standards have been established. The implementation of SWIM will require increased data stewardship roles in FAA divisions and further standardization of data elements to be shared over SWIM (in information objects using common data models).

The common data model is needed to support efficient exchange of all types of NAS information by all SWIM members. An example of an information object that incorporates structural metadata information according to a common data model is shown in Figure 4‑3.

[image: image21.wmf](payload)

Real NAS/SWIM Data

Specific Metadata for this information object

type (and its child objects)

Specific Object Type Metadata

SWIM Common Data Fields

Mandatory for every SWIM object

Original NAS

Data Format

Data Representation

Such as XML

Figure 4‑3: Example of a SWIM information Object Based on a Common Data Model

The information object is considered to have a lifecycle that includes four stages. These are creation; validation and verification; publishing, searching and retrieving; and archiving and disposition. More information on each of these lifecycle stages is provided in Appendix A.

4.2.1.2 Processing Metadata

There are many ways to store and process metadata, such as metadata registries and metadata catalogs. A metadata registry (MDR) contains information that describes the format, structure and definitions of data. Typically, a registry is a software application that uses a database to store and search data, document formats, data definitions and data relationships. A metadata registry does not contain actual data; rather it contains information that describes the data format/structure.

Typically an architecture for a large enterprise implementation, such as SWIM, would maintain one or more central MDR(s) with multiple Local MDRs (LMDRs) providing a local cache of global metadata. Additionally, the LMDR would store local metadata that does not require public access (i.e. metadata not forwarded to the MDRs) and support local query processing. Although logically there is only one MDR regarded as global and publicly available, physically there could be multiple MDRs distributed with a flat hierarchy, full synchronization, and replication.

SWIM also will need to maintain an Information Object Repository (IOR). An IOR is a system that contains the instances of information objects. Typically, it is a software application that uses a database to store and search records that describe data items. While a metadata registry would be used to locate the data attributes relevant to a query, an IOR would support insertion, deletion and selection of database records. Additionally, the IOR would support indexing, synchronization and optimization for optimally storing records in the database.

An IOR can use relational databases to represent XML documents as relational structures, for example Oracle’s XML Database packages.

Metadata may be embedded in an XML document or in another document format. Metadata element values maybe located within an XML resource, or provided directly in the XML metadata. These approaches may be combined, and are designed to interoperate freely, providing a flexible framework within which to design XML metadata for a specific application, for example, a FAA/SWIM defined metadata standard.

The values used for metadata elements are of key importance to a system design, since interoperation of metadata depends as much on the comparability of element values as on the standardization of the metadata elements themselves. The development of a FAA/SWIM metadata standard should include thoughtful consideration of allowed value sets for a defined metadata element. Making value sets accessible to all users of the metadata will be very important for the use of the metadata. The FAA/SWIM metadata framework should use standardized value sets and notations identified in the metadata registries. A FAA ontology study may be needed to help create such value sets. Due to the value of the information included in the metadata registries, maintaining their persistence and integrity is very important.

4.2.1.3 Sample Information Object Description (XML Schema)

This section describes an example SWIM information object to further explore issues to be considered in the development of the SWIM information object. The base object structure is described first, then an information object called “Flight Plan” is formed based on the base object. The information object is described using the XMLSpy tool.

4.2.1.3.1 Base Object and Object Type (Structure)

A representative base object
 developed for SWIM is illustrated in Figure 4‑4.

[image: image22.wmf]

Figure 4‑4: Sample Base Object Structure for SWIM

This base object structure for the SWIM information object includes eight attributes. A description of each of these attribute fields is provided in Table 4‑1.

Table 4‑1: Attributes of Sample SWIM Base Object

	Attributes
	Description
	Data Type

	PublisherID
	The unique publisher ID assigned to all SWIM members
	string

	PlatformID
	The unique platformID default to the publisher
	string

	PublishTime
	The actual time the publish request is made
	date

	InfoObjectID
	The unique information Object ID assigned (as part of the common data model)
	string

	PayLoadFormat
	The actual payload format, such as binary, text, jpg, gif, etc.
	string

	ActivePublishTime
	The publish time requested such as start, end, frequency, etc.
	complex

	InfoObjectType
	The actual information object to be published
	complex

	Signature
	Digital signature if needed, this is an optional field
	boolean

4.2.1.3.2 Structured Fields

Some of the attributes included in the sample base object are identified as data type ‘complex’ in Table 4‑1. In other words, they define another level of attributes or structures. For example, ActivePublishTime defines whether the information object needs to be published instantaneously or for a range of time at a certain frequency. In another example the information object could be published from 12/12/2003 12:30:00 to 17:30:00 at a frequency of once per 300 seconds (every 5 minutes). This information can be captured in a structure for ActivePublishTime as shown in Figure 4‑5.

[image: image23.wmf]ActivePublishTimeData

Figure 4‑5: Expansion of the Structured Attribute ‘ActivePublishTime’

4.2.1.3.3 InformationObjectType

On top of the base object, various information object types can be defined. An example is the FlightMessage object shown in Figure 4‑6.

[image: image24.wmf]FlightMessageData

Figure 4‑6: Sample Information Object: ‘FlightMessage’ Core Information

The flight message object contains core information such as flight departure time and flight arrival time. It also includes flight plan information that opens up to another level of detail as shown in Figure 4‑7.

[image: image25.wmf]
Figure 4‑7: Flight Plan Component of FlightMessage

4.2.1.4 Subscription Language Operations on Information Objects

Section 3.3.2.1 identifies a publish/subscribe architecture as the approach to providing SWIM services. In a publish/subscribe system, subscribers require the ability to express their needs to the system so as to receive desired data from the system. A subscription language defines the rules allowing subscribers to describe their interests. Therefore the expressiveness of a subscription language is a very important design aspect of a publish/subscribe system. Additionally, algorithms corresponding to the subscription language need to be established to allow the broker to recognize the constraints expressed in the subscription language and efficiently match the published data to the subscriptions. In a distributed broker topology domain, publishers publish to their local brokers, subscribers subscribe to their local brokers, and brokers in different topology domains subscribe to each other to exchange the references of a publisher or subscriber.

Syntax and semantics of subscription language operations such as publish, subscribe and unsubscribe need to be defined for SWIM. For example
, in the SWIM common data model, information objects would contain data elements/attributes. Each element/attribute would be associated with a unique name, a pre-defined type (type sets are defined in common data mode metadata schema), and a value.
When a member publishes, the publisher needs to specify the key elements/attributes of the to-be-published information objects. One of the functionalities of the broker(s) is to match published attributes to subscription patterns. If a published information object is matched to a subscription, the broker then routes or directs the information objects towards the interested subscribers. Semantically, a match demands that all attributes in the subscription appear by name in the information object and that they match by type and value.

Subscription languages must describe the kind of data elements/attributes that subscribers are interested in for the broker matching evaluation process. Informally, a rule could be defined using the following SQL
-like syntax:

search Extension e

register e

where Constraint(e)

--

This rule matches all elements “e” that satisfy the rule’s Constraint(e).
For example, in SWIM XML documents have been proposed to express the structural elements of the SWIM common data model. The mechanism to decompose XML documents and set up subscription rules requires definition. For example, this process could accommodate a subscription for all the Flight Messages (flight plans) where airplanes depart from Dulles International Airport on date Jan. 15, 2004. The XML schema of the FlightMessage description is as follows:

<xs:element name="FlightMessage">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Core-Information">

 <xs:complexType>

 <xs:all>

 <xs:element name="Identification-Header" type="xs:string"/>

 <xs:element name="Dep-Airport-ID" type="xs:string"/>

 <xs:element name="Dep-Date" type="xs:dateTime"/>

 <xs:element name="Dep-Time" type="xs:dateTime"/>

 <xs:element name="Arv-Airport-ID" type="xs:string"/>

 <xs:element name="Arv-Date">

 <xs:simpleType>

 <xs:restriction base="xs:dateTime">

 <xs:whiteSpace value="preserve"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="Arv-Time" type="xs:dateTime"/>

 </xs:all>

An overview of the Flight Message Data Structure example is illustrated in Figure 4‑8.

[image: image26.wmf]FlightMessage

CoreInformation

FlightPlan

ID

-

Header

Arv

-

Date

Dep

-

Time

Dep

-

Date

Dep

-

Airport

-

ID

Arv

-

Time

Arv

-

Airport

-

ID

Figure 4‑8: Flight Message Data Structure Example

A pseudo subscription language shows the subscription as follows:

search
FlightMessage F

register
F

where

F.CoreInformation = C

AND C.Dep-Airport-ID == ‘IAD’

AND C.Dep-Date ==’01/15/2004’

The broker matching algorithm should determine the affecting rules and carry out iterative evaluation of the rules and then calculate the information objects that satisfy these rules.

4.2.1.5 SWIM Data Management Objectives

High-level objectives specific to SWIM data management have been identified. These objectives with associated descriptions are captured in Table 4‑2.

Table 4‑2: SWIM Data Management Objectives

	SWIM Data Management Goals
	Descriptions

	Timeliness
	Data should be distributed to target members via SWIM within the required threshold

	Accuracy
	Data needs to maintain its integrity through the data management life cycle

	Understandability/Interoperability
	Data exchanged over SWIM should be understandable by SWIM and its members; exchanged SWIM data should be compatible with SWIM and the target systems

	Availability
	SWIM should provide timely, reliable access to data and information services for authorized users

	Security
	Data exchanged over SWIM should be secure and should maintain its integrity

	Data Searchable Capability
	Data exchanged over SWIM should be searchable by SWIM members to maximum extent allowed

Specific data management concepts being developed for SWIM provide the strategies and mechanisms for meeting these objectives. Specifically, a mapping between SWIM data management objectives and the enabling SWIM Data Management concepts are captured in Table 4‑3.
Table 4‑3: SWIM Strategies/Mechanisms to Meet Data Management Objectives

	SWIM Data Management Goals
	Strategies/Mechanisms to Meet Objectives

	Timeliness
	Differentiate between real-time/stream data and regular data for efficient data processing; provide cache and data marts for fast retrieval

	Accuracy
	Use structural metadata descriptions and validate metadata schema

	Understandability/Interoperability
	Use of metadata is to provide understandability and trusted data for SWIM; SWIM members can understand the exchanged data, both structurally and semantically, and can use the data to best meet their specific needs.

	Availability
	Appropriate use of data marts, data warehouse, and other mechanisms for processing stream data

	Security
	SWIM members will be provided data based on the pedigree, data security level, and user access rights.

	Data Searchable Capability
	MDRs and LMDRs will provide SWIM members with the capability to define and search for needed NAS information; a subscription language allows SWIM members to define ‘search predicates’ for needed information.

4.2.2 SWIM Data Concept Design Issues

This section identifies and addresses eight design issues specific to the SWIM data model. These include:

· Defining the Common Data Model

· Information Objects for real-time/stream Data

· SWIM Data Discovery

· Quality of SWIM Services

· Information Object Persistence

· MDR Issues

· What information to store in data marts and data warehouses

· Representation of Archived Information Objects

Each design issue is addressed in a separate subsection below.

4.2.2.1 Defining the Common Data Model

The concept of a common data model for SWIM has been introduced in Section 4.2.1.1. The SWIM common data model is a NAS-wide pre-defined and agreed upon definition of data structures that make NAS information understandable by all SWIM members. The design issue in this area is focused on gaining consensus on a data model among different NAS communities of interest. Part of this process is the definition of FAA and NAS level policies required to manage the definition and description of a SWIM common data model as well as the design and incorporation of associated taxonomy and ontology information for the common data model.

4.2.2.2 Information Objects for Real-time/Stream Data

Generally stream data is considered data that is produced in large volume and is updated very frequently. A NAS specific example of stream data is surveillance data.

When a SWIM service requires the use of stream data, two challenges are presented. First, the large volume and/or update frequency may add an extra processing burden to the SWIM broker. Second, the context of stream data can not be queried directly. Based on these issues, stream data may need to be processed differently than non-stream data. For example, before publishing stream data, a stream data publishing information object (SPIO) with no actual payload may be sent out first to provide subscribers with publisher information; this would enable subscribers to set up a transmission connection directly with the publishers. Additionally, for data that require archiving in data marts, stream data samples may be selected and stored.

4.2.2.3 SWIM Data Discovery

The process of discovering data requires a shared vocabulary between data producers and data consumers. This agreed upon vocabulary for exchanging information is designated an ontology. It consists of a set of concepts such as things, events and relations specified in a certain way (such as a specific natural language). In the information technology field, ontology is the working model of entities and interactions in some particular domain of knowledge or practice such as electronic commerce.

For a given data taxonomy of the SWIM common data model, it is possible that there may exist different ontologies for different SWIM data consumers. The ability to discover and/or subscribe to the correct information depends on both taxonomy and ontology definitions. This issue may be addressed by developing agreements between different SWIM data consumer communities on domain knowledge to be included in the domain ontology. Then an ontology meta-model associated with the SWIM common data model can be built. The domain knowledge may address domain taxonomy and categories, lexical terms, concepts, relationships and axioms. The domain ontology meta-model may contain information about key elements and attributes, usage of these key elements, relationships between elements. This ontology could be built with UML and XML as the ontology language.

4.2.2.4 Quality of SWIM Services

The role of SWIM is the delivery of NAS data. Because NAS services have performance requirements, the required performance and quality of the SWIM services that enable these NAS services also need to be specified, that is, the criteria that define the quality of SWIM services needs to be defined. These will include such factors as accuracy and latency, and may include certain metadata parameters that can be associated with the quality of SWIM data. These criteria may be common to all SWIM members or may vary by different groups of SWIM members.

Consideration needs to be given to the tradeoffs between quality of SWIM service versus cost and bandwidth constraints (which can be considered policy issues). More metadata can provide better searching ability and flexibility for users but may significantly increase complexity and cost and perhaps add more latency.

4.2.2.5 Information Object Persistence

Information object persistence relates to the ability to keep information objects around after the information object is published. Typically, information objects are characterized in one of two ways, namely mutable or immutable. An information object is considered mutable if the information carried by the object can be changed as the information object moves and its changing history can be stored. On the other hand, if a new information object is published each time the information that is carried by the object requires change, the information object is considered immutable.

This topic can be examined in the context of existing FAA data items and associated databases. For example, the official NAS Resources (NASR) master set of FAA aeronautical data is issued throughout the NAS on a 56-day update cycle. A prototype system is being developed by ATA-100 called Electronic NASR (eNASR). This system provides the functionality that allows authorized FAA information sources to enter propose changes to the official NASR database electronically from remote field sites rather than phoning or faxing in changes to the National Flight Data Center (NFDC) specialists. With the data already in electronic format in a change request form the NFDC specialist reviews the change form and guides it through the approval process. The eNASR updates items (i.e. information objects) in its database every workweek night. As part of this process, an elaborate history of every change is maintained so that it would be possible to roll back the changes to a former state if desired, and there is accountability for every change. The information objects in this example can be considered mutable.

For SWIM, the mutability of SWIM information objects requires definition. Additionally, specific policies are needed to address how changes are handled and recorded.

The pedigree of data captures the history associated with an information object. It can address questions such as the origin of the information object and what has been changed since the information object was published; for example, if an information object is received by a subscriber and the subscriber makes changes to the information object (such as a update of the value of a field or change of the presentation).

Whether or not to capture pedigree information for SWIM is a design decision. If captured, the specific role of this information requires definition (for example, monitoring pedigree information to check information integrity). This design issue requires consideration in conjunction with the investigation of security issues, as the goal of non-repudiation is related to pedigree data.

4.2.2.6 MDR Design

Several design issues relate to a SWIM MDR design. First, the types of metadata resources associated with an MDR need to be identified. These could include items such as an XML registry and data dictionary. Second, depending on the architecture and distribution of the MDR (e.g. if there are some centralized MDRs and LMDRs), the means for integrating and synchronizing the registries requires definition.

4.2.2.7 Information Objects Stored in Data Marts and Data Warehouses

Data marts are relational databases designed to save exchanged information objects for fast retrieval purposes. In contrast, data warehouses are databases designed for long term archive and storage of exchanged information. If used in SWIM, data warehouses could be created new on demand or could be implemented using legacy NAS databases transitioned to accommodate SWIM formats and interactions.

The role of data marts in SWIM would be to archive certain published information objects for a short period of time to support quick retrieval and possibly to support data monitoring. Due to size and performance constraints, not all SWIM published information objects would be appropriate for storage in data marts. Criteria for selecting appropriate SWIM data in data marts would include the following factors:

· Most often published

· Last published

· Most critical

As data warehouses provide information storage for long term archiving, it is not clear whether data warehouses will be part of SWIM or will be accommodated by individual NAS data managers or applications. This decision is an FAA policy issue; once decided, the SWIM architecture design can be refined to reflect the choice. If included as part of SWIM, data warehouses could be considered a set of SWIM members that could subscribe to certain published information.

4.2.2.8 Representation of Archived Information Objects

As described above, SWIM information objects may be archived in SWIM in short term and long term repositories. Depending on the role of the archive, the specific information to be stored and its format must be determined. The archived information could include all or part of the information object (including all or part of the metadata and object payload). Additionally, information could be abbreviated during the archival process.

In addition to format issues, the storage repository requires design. The information object to be stored could be divided into separate storage areas (for example, a weather information object may be decomposed and different weather products stored in different repositories). Links to these storage areas could support the reconstitution of the object upon query request. Typically, data marts archive complete information objects, including metadata information, but data warehouses archive data in its raw format. If these formats are used, a member interface conversion of raw data format to the common data representation would be required for data warehouses. When designing the short term and long term repositories, database load capacity and processing speeds need to be considered.

4.2.3 Data Concept and Issues Summary

A summary of design issues related to SWIM data concepts and representation are summarized in Table 4‑4.

Table 4‑4: Summary of Data Concept Issues

	Issue #
	Data Concept Design Issue
	Factors That Affect the Decision
	How to Resolve
	Impact on Overall Effectiveness of the Architecture

	1
	Who will decide the data and data format in common data model
	Complexity of the overall NAS data; agreement among different Communities of Interest; cost of implementing a common data model; FAA policy
	FAA Policy and Data Stewardship
	High

	2
	Information Objects for real-time/stream data
	Real-time/stream data traffic characteristics; performance requirements for stream data; available bandwidth
	Design Decision
	High

	3
	SWIM Data Discovery

	Complexity of design ontology for SWIM data; implementation cost
	Design Ontology
	Medium

	4
	Quality of SWIM Services
	Available bandwidth; implementation cost; technology/COTS support
	Implementation Decision
	Medium

	5
	Information Object Persistence
	FAA need; implementation cost; technology/COTS support
	Data Stewardship
	Low

	6
	MDR Issues
	Size of common data model; performance requirement
	Implementation Decision
	Medium

	7
	What information objects to store in data marts and data warehouses
	Cost; performance requirement; data analysis; FAA data archiving policy; cost;
	Policy and Implementation Decision
	Medium

	8
	Representation of archived Info Objects
	Size of data, performance requirement
	Implementation Decision
	Medium

4.3 SWIM Member Access Options

In order to support SWIM members of disparate types and capabilities, three means for a potential SWIM member (including legacy components) to access to SWIM services have been defined. These include:

· Distributed proxy functionality (i.e. proxy software is loaded on an individual SWIM member)

· One (standalone) member interface (SWIM proxy) per SWIM member facility, located within the facility (local access)

· One (standalone) member interface (SWIM proxy) per SWIM member facility or at a subset of SWIM member facilities, located at a remote facility (remote access)

These interface options are illustrated in Figure 4‑9. In this figure, a FAA network node is considered a network-capable workstation, service, database, sensor, automation system, etc within the NAS.
[image: image27.wmf]FAA Network

Node

SWIM Members

SWIM

Member

Interface

(SWIM

Proxy)

FAA

Network

Node

FAA

Network

Node

Member

Interface

(SMU)

FTI

Member

Interface

(SMU)

Access Alternatives

Sensors and

legacy components

FAA Network

Node

SWIM Members

SWIM

Member

Interface

(SWIM

Proxy)

FAA

Network

Node

FAA

Network

Node

Member

Interface

(SMU)

FTI

Member

Interface

(SMU)

Access Alternatives

Sensors and

legacy components

Figure 4‑9: SWIM Member Access Options

These access methods have been assessed based on the following criteria:

· Processing speed

· Memory requirements (for FAA network node)

· Complexity

· Cost

The evaluation of each access method based on these identified criteria is captured in Table 4‑5.

Table 4‑5: Comparison of SWIM Access Methods

	Access Method
	Evaluation Criteria

	
	Processing Speed
	Memory Requirements
	Complexity
	Cost

	Distributed Proxy implemented in FAA node
	High
	High
	Med
	Med/Low

	Standalone Proxy in Local Facility
	Med
	Low
	Med/High
	High

	Standalone Proxy in Remote Facility
	Med/Low
	Low
	Med/High
	Med/High

For this design trade-off, a single solution is not required. The first access method is the preferred approach, to be used when the FAA network node is capable of supporting the SWIM member interface software. However, in cases where the capabilities of the FAA network node cannot support the SWIM member interface software, the second approach may be required in initial deployments of SWIM. In these cases, when the non-compliant workstation or server is replaced, the SWIM member interface software would be installed on the updated node to migrate to the preferred (distributed) access method. Additionally, facility restrictions or size constraints may warrant the use of a remote standalone SWIM member interface, where the remote interface unit is accessed via the FAA network infrastructure (e.g. FTI), as a default gateway or proxy server, implemented through tunneling or encapsulation.

In all cases, it is assumed that legacy components not network capable (e.g., weather/surveillance sensors) will require an interface, or gateway functionality, to the SWIM network via an FAA network node. This interface is separate and independent of the SWIM member interface.

A summary of the SWIM member interface option design decisions is provided in Table 4‑6.

Table 4‑6: SWIM Member Interface Option Summary

	Options #
	Interface Integration Options
	Factors That Affect the Decision
	How to Resolve
	Impact on Overall Effectiveness of the Architecture

	1
	Proxy
	Member component is powerful enough to support proxy
	Design Analysis, topology decision, traffic analysis
	Medium to High

	2
	Standalone (local Access)
	Network node connection (intranet available)
	Design Analysis, topology decision, traffic analysis
	Medium to High

	3
	Standalone (Remote Access)
	Network node connection
(FTI extranet available)
	Design Analysis, topology decision, traffic analysis
	Medium to High

4.4 SWIM Process Patterns

4.4.1 Introduction

SWIM processes are operations that SWIM provides to SWIM members to support NAS information exchange. Five primary processes have been defined for SWIM, as identified Table 4‑7.

Table 4‑7: Primary SWIM Process Definitions

	SWIM Process
	Definition

	Register
	A SWIM member declares its role in SWIM (e.g., publish weather information, store surveillance information, etc.) A SWIM member may have more than one role.

	Subscribe
	SWIM member requests SWIM to deliver a specific type of information in the future (continuous delivery). Some subscriptions can be episodic, and some (e.g. some weather products) can be regular (and very voluminous), but infrequent.

	Unsubscribe
	Reverse of a previous subscribe request

	Publish
	SWIM member provides the NAS data/information for SWIM to distribute to the subscribing members

	Query
	SWIM member requests specific type of information previously published (one time) or to be published in the future.

To gain an understanding of the design tradeoffs related to how SWIM processes data, a basic understanding of the range of data characteristics to be accommodated by SWIM is required. Specifically, the nature of the data volume as well as the update frequency affects data processing operations. Two categories of data volume (large and small) and two categories of update frequency (real-time and non-real-time) have been identified. Different combinations of these categories lead to different data definitions as shown in Table 4‑8.

Table 4‑8: SWIM Data Category

	
	Data Update Frequency

	
	Real-time
	Non-real-time

	Data volume
	Large
	Large stream data
	Large non-stream data

	
	Small
	Small stream data
	Small non-stream data

Stream data are updated at or near real-time frequency. An example of such data is surveillance target reports. Stream data are further categorized as large or small based on the data volume. Non-stream data is also classified as having large or small volume. This classification of data is necessary, as stream data may need to be processed differently in order to meet stringent performance requirements. In this report the term “stream data” includes both large and small stream data, and “non-stream data” refers to both large and small non-stream data.

A process pattern identifies the logical nature of how a SWIM operation is handled. Three alternative process patterns that address the way SWIM components (identified in Section 3.3.2.3.3) are used to accommodate SWIM operations have been identified. These include:

“Without Broker” –

The distribution of exchanged information is provided by a direct service connection between the subscriber member and the publisher member without broker intervention in this alternative. This type of direct service can be accommodated by one of two means:

1. Subscriber or publisher members require a priori knowledge of each other in order to establish a direct connection.

2. Second, publishers can publish their data to different data “channels” based on criterion such as data subject. Subscribers then subscribe to different “channels” to obtain desired information. In this scenario, the member interface to the data “channel” accommodates the priori knowledge of all member locations.

The advantage of “Without Broker” alternative is that data flow is directly from publishers to subscribers. This is desirable for stream data associated with stringent performance requirements. A disadvantage, however, is that publishers either require prior knowledge of their subscribers and must register the information and perform registry updates (for the first case identified above) or must implement member interfaces with standardized means of accommodating data “channels” (for the second case identified above).

“With Broker” –

In this scenario, the broker registers the publisher and subscriber information, accepts publishing and subscribing requests, matches published information objects to subscriptions, and delivers those matched information objects to interested subscribers. Publisher or subscriber members do not need prior subscriber or publisher member information. The advantage of this approach is that, since the publishers and subscribers do not need prior knowledge of each other, any changes to either side will be handled by the broker. This reduces the responsibilities of publishers and subscribers. This process also unifies the management of the exchanged information (such as tracking, monitoring and etc.) in the broker. A disadvantage of this approach is that extra latency may be added to data processing since all data flows through the broker. Additionally, the ability to handle large stream data may be restricted by the load capability of the broker.

“VC Broker”—

This alternative includes features of both processes identified above. The broker functionality is extended to include being able to set up virtual connection (VC) for publishers and subscribers when dealing with stream data. In this case, brokers function differently for different SWIM members based on data associations. For non-stream data, the broker accepts subscriptions from subscribers, matches publishers’ information objects to subscriptions, and distributes the matched information objects to those interested subscribers. For NAS information services with stringent performance requirements (e.g. latency), the actual information objects are not published to the broker. Instead, the broker sets up a virtual circuit between the publisher and interested subscribers for direct transport of information objects. In this case, a publisher could send a publishing notification information object (SPIO) with no actual data payload to the broker to inform the broker of the type of information the publisher can share. When the broker takes subscriptions from subscribers, it may match the subscription to the SPIO information and forward the publisher information to those interested subscribers. Subscribers then initiate the connection with publishers for data transport. There are other ways of implementing the virtual circuit as well. An advantage of this approach is that it accommodates both data requiring a brokered exchange process (i.e. the information exchange is via the broker), and other data, such as stream data, more appropriate for direct exchange. However, this approach adds extra complexity to information management functions, such as monitoring and tracking of exchanged data.

Table 4‑9 shows six SWIM Process cases (primary publish and subscribe) that are categorized by data type (non-stream and stream data) and three alternative process patterns (With Broker, Without Broker, and VC Broker. Each case is illustrated with a diagram, a descriptive paragraph, and a table summarizing the steps associated with each scenario and its associated advantages and disadvantages.

For each of the following cases, before publishing an Information Object (IO), publishing members validate the information objects with the LMDR. LMDRs need to be synchronized with the SWIM MDR/IORs on a regular basis.
Table 4‑9: SWIM Process Cases
[image: image28.wmf]Case 2

-

C

Stream Data without

Broker

Case 2

-

B

Stream data to Broker

Case 2

-

A

Stream data

2

Non

-

stream Data to

VC Broker

Non

-

stream Data

without Broker

Case 1

-

B

Non

-

stream Data to

Broker

Case 1

-

A

Non

-

stream data

1

Hybrid

C

Without Broker

B

With Broker

A

Stream data to

VC Broker

Case 2

-

C

Stream Data without

Broker

Case 2

-

B

Stream data to Broker

Case 2

-

A

Stream data

2

Case 1

-

C

Case 1

-

C

Case 1

-

C

Case 1

-

C

Non

-

stream Data

without Broker

Case 1

-

B

Non

-

stream Data to

Broker

Case 1

-

A

Non

-

stream data

1

VC Broker

C

Without Broker

B

With Broker

A

4.4.2 Non-Stream Data to Broker Scenario: Case 1-A

In the non-stream data to broker scenario, a subscribing member registers an information request with the SWIM broker. Asynchronously, publishing members register and send information objects to the SWIM broker. The broker matches the information requests with published information objects and forwards appropriate information objects to subscribing members. Information objects may also be forwarded to data marts for temporary storage (so that information is available for user query) as well as to other members that may provide a data warehousing function. This scenario is illustrated in Figure 4‑10 below.

[image: image29.wmf]SWIM

Data

Mart

MDR/IOR

Broker

Broker

IO

ODF

LMDR

LMDR

publisher

Member

2.

1.

3

IO

3

IO

ODF: Original Data Format

TDF: Target Data Format

ODF: Original Data Format

TDF: Target Data Format

IO

TDF

Subscriber

Member

Data

Warehouse

IO

TDF

3

Member

Interface

Member

Interface

Member

Interface

Member

Interface

Member

Interface

Member

Interface

Non

-

stream Data to Broker

–

Case 1

-

A

Figure 4‑10: SWIM Processing Case 1-A: Non-Stream Data to Broker Scenario
A summary of the steps associated with this scenario as well as associated advantages and disadvantages is captured in Table 4‑10.

Table 4‑10: Case 1-A Steps and Advantages/Disadvantages

	Steps
	Case 1-A: Non-stream Data to Broker

	Prerequisite
	Before publishing an IO, the publisher validates the IO with the local metadata registry (LMDR)

	Step 1
	A Subscriber Member subscribes to specified data

	Step 2
	A Publisher Member publishes an IO to the broker

	Step 3
	The broker matches the IO to subscribers and publishes the IO to the subscribers (data marts, data warehouse are treated as subscribers as well)

	Advantages
	Unified information management , location transparency, publishing/subscribing flexibility

	Disadvantages
	Extra processing latency, but may be traded off with its benefits

4.4.3 Stream Data to Broker Scenario: Case 2-A

The service steps associated with this scenario are similar to the ‘non-stream data to broker’ scenario described above (Section 4.4.2). Here a subscribing member registers an information request with the SWIM broker. Asynchronously, publishing members register and send information objects to the SWIM broker. Like the previous scenario, the broker matches the information requests with published information objects and forwards appropriate information objects on to subscribing members. Unlike the previous scenario, in this stream data case, sampled data may also be forwarded to data marts for temporary storage (so that information is available for user query) as well as to other members that may provide a data warehousing function. This scenario is illustrated in Figure 4‑11 below.

[image: image30.wmf]SWIM

Data

Mart

MDR/IOR

Broker

Broker

IO

ODF

LMDR

LMDR

publisher

Member

2.

1.

3

IO

3

IO

IO

TDF

Subscriber

Member

Data

Warehouse

IO

TDF

3

Stream Data to Broker

–

Case 2

-

A

stream data

sampled stream data

stream data

sampled stream data

stream data

sampled stream data

stream data

sampled stream data

Member

Interface

Member

Interface

Member

Interface

Member

Interface

Member

Interface

Member

Interface

Figure 4‑11: Processing Case 2-A: Stream Data to Broker Scenario

A summary of the steps associated with this scenario as well as associated advantages and disadvantages is captured in Table 4‑11.

Table 4‑11: Case 2-A Steps and Advantages/Disadvantages

	Steps
	Case 2-A: Stream Data to Broker

	Prerequisite
	Before publishing stream data IOs, a publisher validates IOs with local metadata registry (LMDR)

	Step 1
	A Subscriber Member subscribes to specified data

	Step 2
	A Publisher Member publishes stream data IOs to the broker

	Step 3
	The Broker matches the first IO with subscribers and then publishes the rest of the stream data IOs to the subscribers (data marts, data warehouse are treated as subscribers as well, but will get sampled stream data)

	Advantages
	Unified information management, location transparency, publishing/subscribing flexibility

	Disadvantages
	Real-time stream data publishing performance may be restricted by broker load capacity and processing speed.

4.4.4 Non-Stream Data without Broker Scenario: Case 1-B

In this scenario, a publishing member broadcasts data on a logical data channel. Each channel can be associated with some data attribute, for example data subject. Subscribing members can select to “tune in’ to specific channels. This includes members that may provide data warehousing functionality. This scenario is illustrated in Figure 4‑12 below.

[image: image31.wmf]Non

-

Stream Data / No Broker

--

Case 1

-

B

–

LMDR

MDR/IOR

publisher Member

ODF

ODF

1

IO

1

IO

subscriber Members

TDF

TDF

Member

Interface

subscriber Members

TDF

TDF

Member

Interface

Member

Interface

Member

Interface

Member

Interface

subscriber Members

TDF

TDF

Member

Interface

subscriber Members

TDF

TDF

Member

Interface

Member

Interface

Data Channel

1

IO

1

IO

2

I

O

2

I

O

2

IO

2

IO

2

I

O

2

I

O

Data Channel

Data

Warehouse

TDF

Member

Interface

Data

Warehouse

TDF

Member

Interface

Member

Interface

2

I

O

2

I

O

Figure 4‑12: Processing Case 1-B: Non-Stream Data without Broker Scenario
A summary of the steps associated with this scenario as well as associated advantages and disadvantages is captured in Table 4‑12.

Table 4‑12: Case 1-B Steps and Advantages/Disadvantages

	Steps
	Case 1-B: Non-Stream Data without Broker

	Prerequisite
	Before publishing IOs, the publishers validate IOs with local metadata registry (LMDR)

	Step 1
	The Publisher Member publishes non-stream data IOs to different data channels based a data attribute such as “subject type”

	Step 2
	Subscribers obtain data from the channels corresponding to their subscription. Additionally, data warehouses may archive data from data channels.

	Advantages
	Simple, fast

	Disadvantages
	Pre-defined data channels need to be set up. Because the number of these channels may be limited, subscribers may have limited flexibility on what they may to subscribe to. Additionally, if the subscriber population changes frequently, the system will need to configure frequently. Finally, the performance of this processing scenario is affected by and limited to the size of the data channels.

4.4.5 Stream Data without Broker Scenario: Case 2-B

The service steps associated with this scenario are similar to the ‘non-stream data without broker’ scenario described above (Section 4.4.4), except that each logical data channel can be considered a virtual circuit. Then publishing members broadcast stream data directly to subscribing members associated with a logical data channel. As in the scenario above, each logical channel is associated with some data attribute like data subject. Subscribing members receive “data channel” or “data bus” information directly from the publisher. Additionally, sampled stream data may be stored in data warehouses. This scenario is illustrated in Figure 4‑13 below.

[image: image32.wmf]Stream Data / No Broker

–

Case 2

-

B

LMDR

MDR/IOR

publisher Member

ODF

ODF

1

IO

1

IO

subscriber Members

TDF

TDF

Member

Interface

subscriber Members

TDF

TDF

Member

Interface

Member

Interface

Member

Interface

Member

Interface

subscriber Members

TDF

TDF

Member

Interface

subscriber Members

TDF

TDF

Member

Interface

Member

Interface

Data Channel

1

IO

1

IO

2

I

O

2

I

O

2

IO

2

IO

3 sampled data

2

I

O

2

I

O

Data Channel

Data

Warehouse

TDF

Member

Interface

Data

Warehouse

TDF

Member

Interface

Member

Interface

Figure 4‑13: Processing Case 2-B

A summary of the steps associated with this scenario as well as associated advantages and disadvantages is captured in Table 4‑13.

Table 4‑13: Case 2-B Steps and Advantages/Disadvantages

	Steps
	Case 2-B: Stream Data without Broker

	Prerequisite
	Before publishing stream data IOs, a publisher validates IOs with local metadata registry (LMDR)

	Step 1
	Publisher publishes stream data IOs directly to the subscribers (publisher has to have a priori knowledge of subscribers)

	Step 2
	Subscribers receive raw data at a stream data application interface (API)

	Step 3
	A Stream data API may send sample raw data to data warehouse for data archiving

	Advantages
	Simple, fast

	Disadvantages
	Pre-defined data channels need to be set up. Because the number of these channels may be limited, subscribers may have limited flexibility on what they may to subscribe to. Additionally, if the subscriber population changes frequently, the system will need to configure frequently. Finally, the performance of this processing scenario is affected by and limited to the size of the data channels.

4.4.6 Non-Stream Data to VC Broker Scenario: Case 1-C

The service steps associated with this scenario are similar to the ‘non-stream data to broker’ scenario described above (Case 1-A). A subscribing member registers an information request with the SWIM broker. Asynchronously, publishing members register and send information objects to the SWIM broker. The broker matches the information requests with published information objects and forwards appropriate information objects on to subscribing members. Information objects may also be forwarded to data marts for temporary storage (so that information is available for user query) as well as to other members that may provide a data warehousing function. This scenario is illustrated in Figure 4‑14.

[image: image33.wmf]SWIM

Data

Mart

MDR/IOR

Broker

VC Broker

IO

IO

ODF

LMDR

LMDR

LMDR

LMDR

publisher

Member

2.

1.

IO

3

IO

TDF

Subscriber

Member

Data

Warehouse

IO

IO

TDF

3

Non

-

Stream Data to VC Broker

--

Case 1

-

C

3

Member

Interface

Member

Interface

Member

Interface

Member

Interface

Member

Interface

Member

Interface

IO

IO

Figure 4‑14: Case 1-C: Non-Stream Data to VC Broker Scenario

A summary of the steps associated with this scenario as well as associated advantages and disadvantages is captured in Table 4‑14.

Table 4‑14: Case 1-C Steps and Advantages/Disadvantages

	Steps
	Case 1-C: Non-stream Data to VC Broker

	Prerequisite
	Before publishing an IO, the publisher validates the IO with the local metadata registry (LMDR)

	Step 1
	A Subscriber Member subscribes to specified data

	Step 2
	A Publisher Member publishes an IO to the VC broker

	Step 3
	The VC broker matches the IO to subscribers and publishes the IO to the subscribers (data marts, data warehouse are treated as subscribers as well)

	Advantages
	Location transparency, publishing/subscribing flexibility

	Disadvantages
	Extra processing latency, but may be traded off with its benefits. Data management complexity to process steam and non-stream data

4.4.7 Stream Data to VC Broker Scenario: Case 2-C

In this scenario, subscribers send their subscriptions to the VC broker. When publishing stream data, publisher sends a stream data publishing information object (SPIO) to the VC broker. The SPIO contains only information about the stream data to be published, with no actual payload (data) in the information object. The VC broker then matches the SPIO with interested subscribers and informs the subscribers to set up the connection to publishers (“pull” data from publishers). Broker also can inform the publishers to set up the virtual connection with interested subscribers (“push” data to subscribers)

Figure 4‑15 below shows the “pull” case of this scenario.

[image: image34.wmf]SWIM

Data

Mart

MDR/IOR

Broker

VC Broker

SPIO

SPIO

ODF

LMDR

LMDR

LMDR

LMDR

publisher

Member

2.

1.

4

SPIO

3

IO

TDF

Subscriber

Member

SPIO

3

Stream Data to VC Broker

--

Case 2

-

C

3

Member

Interface

Member

Interface

Member

Interface

Member

Interface

Data

Warehouse

TDF

Member

Interface

Data

Warehouse

TDF

Member

Interface

Member

Interface

SPIO

SPIO

VC

VC

Figure 4‑15: Processing Case 2-C: Stream Data to VC Broker Scenario
A summary of the steps associated with this scenario as well as associated advantages and disadvantages is captured in Table 4‑15.

Table 4‑15: Case 2-C Steps and Advantages/Disadvantages

	Step Number
	Case 2-C: Stream Data to VC Broker

	Pre-requisite
	Before publishing IOs, publisher validates IOs with local Metadata registry

	Step 1
	A Subscriber Member subscribes to specified data

	Step 2
	A Publisher Member publishes a stream data publishing IO (SPIO, with no payload) to the broker to advertise its stream data to be published

	Step 3
	The SPIO, including publisher reference information, is stored in data marts and data warehouses. The broker matches subscription requests with advertised data and provides the subscriber with publisher information required to setup a virtual circuit from publisher to subscriber.

	Step 4
	Publisher publishes raw stream data to subscribers and to subscriber

	Advantages
	This scenario provides efficient delivery of raw data from source to sink, location transparency, and publishing/subscribing flexibility.

	Disadvantages
	First, this adds extra information management burden to the broker. Second, publishers need to have the capability to handle multicasting to target sinks. Third, data marts may not be updated correctly in this scenario; it may be possible to lose track of information passing through the broker (or lose information management information.)

SWIM processes are also illustrated in the following sequence diagrams. Figure 4‑16 shows a baseline SWIM process pattern that maps to case 1-A, 1-B and 1-C where information objects get sent to a broker first for subscription matching and then get distributed to interested subscribers. All five primary process operations are shown in this figure.

[image: image35.wmf]Conditional

Always

Optional

Registration

Subscribe

Unsubscribe

Publish

Query

Broker

Data Mart

Data

Warehouse

SWIM Processes

SWIM Member

–

Request Info

SWIM Member

–

Provide Info

Conditional

Always

Optional

Conditional

Always

Optional

Registration

Subscribe

Unsubscribe

Publish

Query

Broker

Data Mart

Data

Warehouse

SWIM Processes

SWIM Member

–

Request Info

SWIM Member

–

Provide Info

Figure 4‑16: SWIM Process Scenarios

Figure 4‑17 illustrates how baseline SWIM process operations are applied to the VC broker pattern to accommodate stream data publication. This matches case 2-C discussed in Section 4.4.6.

[image: image36.wmf]Conditional

Optional

Always

Publish real

-

time

periodic info (e.g.,

surveillance)

Metadata

Metadata

Push: Using info from broker, provider forwards data

Publish streaming data

Metadata

Metadata

Pull: Using metadata, client accesses data

Query requiring fusion

of DM and DW

information

Data

Warehouse

Broker

Data Mart

SWIM Processes

SWIM Member

–

Request Info

SWIM Member

–

Provide Info

Subscriber metadata

Conditional

Optional

Always

Conditional

Optional

Always

Publish real

-

time

periodic info (e.g.,

surveillance)

Metadata

Metadata

Push: Using info from broker, provider forwards data

Publish streaming data

Metadata

Metadata

Pull: Using metadata, client accesses data

Query requiring fusion

of DM and DW

information

Data

Warehouse

Broker

Data Mart

SWIM Processes

SWIM Member

–

Request Info

SWIM Member

–

Provide Info

Subscriber metadata

Publish real

-

time

periodic info (e.g.,

surveillance)

SPIO

SPIO

Push: Using info from broker, push data

Publish streaming data

SPIO

Provider info

Pull: Using provider info, pull data

Query requiring fusion

of DM and DW

information

Data

Warehouse

Broker

Data Mart

SWIM Processes

SWIM Member

–

Request Info

SWIM Member

–

Provide Info

Subscriber info

Figure 4‑17: VC Broker SWIM Process Scenarios

Figure 4‑18 illustrates the sequence diagram scenarios of a “without broker” SWIM process pattern. This maps to cases 1-B and 2-B as discussed in section 4.4.3 and 4.4.4.

[image: image37.wmf]Publish real

-

time

periodic info (e.g.,

surveillance)

Metadata

Metadata

Push: Using info from broker, provider forwards data

Data

Warehouse

SWIM Processes

SWIM Member

–

Request Info

SWIM Member

–

Provide Info

Subscriber metadata

Publish real

-

time

periodic info (e.g.,

surveillance)

Metadata

Metadata

Push: Using info from broker, provider forwards data

Data

Warehouse

SWIM Processes

SWIM Member

–

Request Info

SWIM Member

–

Provide Info

Subscriber metadata

Subscribe

Data

Warehouse

Data channel1

SWIM Processes

SWIM Member

–

Request Info

SWIM Member

–

Provide Info

Data channel2

Publish streaming data

Metadata

Metadata

Pull: Using metadata, client accesses data

Publish streaming data

Metadata

Metadata

Pull: Using metadata, client accesses data

Publish data

Publish streaming data

Metadata

Metadata

Pull: Using metadata, client accesses data

Publish streaming data

Metadata

Metadata

Pull: Using metadata, client accesses data

Publish data

Figure 4‑18: “Without Broker” SWIM process Scenarios

4.4.8 Summary of SWIM Processing Option Design Decisions

In summary, there are three alternative SWIM process patterns/options that perform the primary SWIM processes differently while processing stream or non-stream data. This is a critical design decision, the selection a SWIM process pattern affects how the SWIM broker platform is to be built up and how brokers are distributed. SWIM can use the base line (with broker) case, but can also use the VC broker to accommodate stream data cases. Factors that affect the tradeoffs of these patterns include NAS data traffic patterns, performance requirements (specially those for stream data), and communication network bandwidth limitations.

Table 4‑16: Summary of SWIM Process Options

	Process Option Number
	SWIM Process Option Name
	Factors That Affect the Decision
	How to Resolve
	Impact on Overall Effectiveness of the Architecture

	1
	Without Broker
	If broker function is minimized and can be replaced by other means, this option maybe used.
	Traffic analysis; performance requirements; Bandwidth availability, Architecture Design
	High

	2
	With Broker
	Desire of broker functionality and the architecture meets the overall performance requirement.
	Traffic analysis; performance requirements; Bandwidth availability, Architecture Design
	High

	3
	VC Broker
	Desire of broker functionality and the need of virtual connection functionality to compensate special need to meet the performance requirements.
	Traffic analysis; performance requirements; Bandwidth availability, Architecture Design
	High

4.5 Distribution of Broker Domains (Topology)

SWIM will likely require a number of interconnected brokers to satisfy NAS-wide data exchange services, where each broker would service a subset of the SWIM members. This section focuses on the following topics:

· Interconnection of these brokers, specifically, the SWIM broker topology (Section 4.5.1)

· Inter-broker communications to support publish/subscribe (Section 4.5.2)

4.5.1 Broker Connection Topology

The choice of a broker topology is an important part of the overall SWIM physical architecture design. Broker performance (e.g. latency) varies with topology and affects the SWIM objective of guaranteed delivery of the desired information to the right SWIM members within NAS specified performance (e.g. latency) requirements. Broker interconnections can be implemented in a variety of configurations, depending on a range of requirements. When deciding the broker topology, the following requires consideration:

· Communications between brokers: this is the information that needs to be passed between brokers to enable correct publish/subscribe services

· Data processing strategy or algorithms: affects optimization of message traffic

A key challenge in designing the broker topology is scalability. Scalability refers not only to the numbers of publishers and subscribers and the numbers of subscriptions and published information objects, but also the need to meet specified performance requirements given bandwidth constraints, possible heterogeneous platforms, and decentralized control.

Three basic interconnection topology architectures and a hybrid case have been studied
:

· Hierarchical

· Peer-to-Peer (Acyclic or General)

· Hybrid. A derived diagram for each is illustrated in Figure 4‑19.

[image: image38.wmf]B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Flat

Hierarchical

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Hybrid

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Broker Domain

Proxy

Proxy

Proxy

DM

DM

DW

Client

Client

Server

Broker

B

Legend

Broker Domain

Proxy

Proxy

Proxy

DM

DM

DW

Client

Client

Server

Broker

Broker Domain

Proxy

Proxy

Proxy

DM

DM

DW

Client

Client

Server

Broker

B

Legend

Acyclic

Peer to Peer

General

Peer to Peer

Hierarchical

Client/Server

Figure 4‑19: Broker Topology Choices

In the Hierarchical Client/Server Broker Topology, pairs of connected broker domains interact in an asymmetric client/server relationship. In this architecture, each broker (denoted as “B”) may have multiple clients, but only one output to its “master” broker. Each broker domain will receive subscriptions, publication and notifications from its “client” broker domains, and will send only notifications back to those “client” broker domains. The primary disadvantage associated with this architecture is the potential overloading of brokers in the upper levels of the hierarchy and the fact that each broker is potentially a single point of failure
.

In the Acyclic
 Peer-to-Peer Broker Topology, brokers communicate with each other symmetrically as peers. Subscriptions, publications and notifications can be sent from any peer broker to its connected peer broker. In this architecture, a broker can only connect to one other broker, which allows for efficient routing algorithms by eliminating “cyclic” paths (routing “in circles” around the same broker connected in a loop). This comes at the expense of potentially lower network reliability, as a broker failure represents a single point of network failure.

The General Peer-to-Peer Broker Topology, is similar to the acyclic peer-to-peer topology in that it allows bi-directional communication (i.e. subscriptions, publish) between brokers; however the general peer-to-peer architecture allows for multiple paths between brokers. This topology is more flexible and provides more robust reliability than the acyclic peer-to-peer architecture, but special routing algorithms are required to avoid cycles.

Sometimes the broker connectivity requirements cannot be accommodated by a single, specific architecture topology. In these cases, a hybrid architecture comprised of elements of more than one type of topology may be more suitable. It is likely that the scope and diverse nature of NAS information services and its users will dictate the need for some type of hybrid architecture, and thus it warrants further analysis.

It is important to note that the broker domain architecture topologies previously introduced are related to, but may not be identical to the physical network topology. Broker domain related elements do not necessarily have to be co-located in the same physical location as network elements.

4.5.2 Inter-broker Communications

When the broker connectivity (topology) is decided, communications between brokers need to be established to provide the publish/subscribe services. Generally there are two methods to maintain the inter-broker communications. For the method, when a subscriber member submits a subscription to the access point broker, the subscription is propagated throughout the network to all other brokers. The routing paths for publishing IOs (information objects) are set by the subscriptions. When an information object is published and matches the subscription, the information object is routed towards the subscriber, following the routing path set by the subscription.

The second method of inter-broker communications is to let the publisher send out a special publishing notice (advertisement) to specify what the publisher intends to publish. The advertisement is sent throughout the network to every broker. When a subscription is sent to a broker, the broker propagates the subscription only to the matching advertised publisher. Information objects can then be forwarded only towards the matching path. More complicated implementation intelligence can be built to optimize the routing and communication algorithms. Details can be found in various related research papers
,
.
A concept called autonomic computing shows another promising way to address broker topology and its scalability and performance issues. The following describes this concept:

Autonomic computing is a self-managing computing model named after, and patterned on, the human body's autonomic nervous system. An autonomic computing system would control the functioning of computer applications and systems without input from the user, in the same way that the autonomic nervous system regulates body systems without conscious input from the individual. The goal of autonomic computing is to create systems that run themselves, capable of high-level functioning while keeping the system's complexity invisible to the user.

Autonomic computing is one of the building blocks of pervasive computing, an anticipated future computing model in which tiny - even invisible - computers will be all around us, communicating through increasingly interconnected networks. Many industry leaders, including IBM, HP, Sun, and Microsoft are researching various components of autonomic computing. ...

According to IBM, there are eight crucial elements in an autonomic computing system: it must maintain comprehensive and specific knowledge about all its components; it must have the ability to self-configure to suit varying and possibly unpredictable conditions; it must constantly monitor itself for optimal functioning; it must be self-healing and able to find alternate ways to function when it encounters problems; it must be able to detect threats and protect itself from them; it must be able to adapt to environmental conditions; it must be based on open standards rather than proprietary technologies; and it must anticipate demand while remaining transparent to the user.

By applying these concepts to the broker topology case, a fully meshed set of autonomic computing components might be added to the broker topology that dynamically establish relationships with broker domains as shown in Figure 4‑20.

[image: image39.wmf]B

B

B

B

B

B

B

B

B

B

AC

AC

AC

AC

AC

AC

AC

AC

AC

AC

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Figure 4‑20: Autonomic Computing Components and Broker Topology

4.5.3 SWIM Broker Topology Design Decisions

This subsection is addressed in two phases. First, design steps are identified, then the definition of the design solution space for SWIM is derived.

4.5.3.1 SWIM Broker Topology Design Steps

The first step in defining a broker topology for SWIM is determining the number of brokers required. Three general broker distribution levels have been identified for this study corresponding to implementing brokers in different types of NAS facilities. This is illustrated in Figure 4‑21. The broker distribution levels include:

· Local level: One broker per ATCT/airport

· Regional level: One per TRACON/AFSS

· Cross-regional level: One per ARTCC/Major Facility (e.g. ATCSCC)

[image: image40.wmf]Cross

-

Regional

One broker per

ARTCC level

Regional

One broker Per

TRACCON level

Local

One broker

per Airport level

Regional

One broker Per

TRACCON level

Local

One broker

per Airport level

Figure 4‑21: Three General Levels of Broker Distribution for the NAS

After the number of brokers is chosen, the choice of type of interconnections between brokers must be made among:

· Flat peer-to-peer (either acyclic or general peer-to-peer)

· Hierarchical

· Autonomic Computing

The following table shows the suitability of the possible broker interconnection topologies and the level of broker installations.

Table 4‑17: Relationship Between Number of Brokers and Interconnection Topology

	
	Flat peer-to-peer
	Hierarchical
	Autonomic Computing

	Local
	Not suitable
	Suitable
	Suitable

	Regional
	Not suitable
	Suitable
	Suitable

	Cross-Regional
	Suitable
	Suitable, but may not be necessary
	Suitable

4.5.3.2 Defining the SWIM Broker Topology Solution Space

In order to develop an appropriate broker topology for SWIM, several design factors need to be taken into consideration. Key factors include:

· Data Distribution Range: The range is categorized as local or regional; local refers to data published/subscribed within a local FAA node
, while regional refers to data published/subscribed across different FAA nodes.

· Nature of Traffic: This is categorized by whether the published data is considered to be fast or stream data (very high data update rate, e.g., publish/update frequency is over 1 data packet per second), or the data is considered to be slow or non-stream data.

· Variability of Subscribers: Steady or variable indicate whether or not the number and sources of subscribers that subscribe to a particular type of information change frequently.
· Broker Management Complexity: Low or high indicate whether multiple tiers of brokers add extra information management burdens and latency to the architecture

Identification of applicable values for the first three factors identified above requires investigation of the information to be exchanged via SWIM. Five categories of NAS Information Services have been identified
. These categories are listed below along with associated definitions. The definitions have been made with the intent of ensuring that SWIM development efforts that categorize NAS information can be addressed in categories that do not overlap. In the definitions below, NAS airspace is considered to be the ground surfaces and volumes of airspace that are subject to the NAS ATC system.

· Surveillance information, defined as data about the actual locations of aircraft, and any surface vehicles, buildings and other non-meteorological obstructions to aircraft in the NAS airspace.

· Weather information, defined as data about atmospheric or meteorological conditions in the NAS airspace

· Flight management information, defined as data in, and associated with, flight plans or profiles entered into, being entered into, or being changed in the NAS air traffic control system.
· Aeronautical information, defined as navigational and other data produced for pilots about the NAS airspace and the NAS air traffic control system and its assets. This data includes airspace definitions, navigational and communication aids and procedures, and changes to them.
· Air Traffic Management (ATM) resource management information, defined as data on the infrastructure assets of the NAS and their operational status or performance as well as data used to negotiate, allocate, or modify NAS airspace assets and associated airspace definitions

The characteristics of the five domains of NAS Information Services are listed in Table 4‑18.

Table 4‑18: Characterizing SWIM Data by Service Domain

	Service Domain
	Data Distribution Range
	Data Publish/Update Rate
	Variability of Subscribers

	Weather
	Local
	Slow non- stream
	Variable

	Surveillance
	Local
	Stream data
	Steady

	Flight Management
	Regional
	Fast non-stream
	Steady

	Aeronautical Information
	Regional/Local
	Slow non-stream
	Variable

	Resource Management
	Local
	Slow non-stream
	Steady

Relating the broker distribution levels to SWIM data characteristics provides a means to evaluate and compare the broker topology solution space for SWIM. Table 4‑19 illustrates relationships between the solution space and the identified design factors.

Table 4‑19: Comparison of Broker Topology Designs

	Broker Design

Distribution
	Broker Layout
	Data Distribution
	Broker Management

Complexity
	Data Update Rate
	Subscriber Variability

	Local broker
	Requires a large number of brokers; they may be distributed based on NAS facility geographic location; topology can be flat, general peer-to-peer or can be hierarchical.

	Best suited for the situation when data exchange occurs mostly locally, some regionally, and a few across regions
	Requires numerous broker linkages resulting in high broker management complexity
	May add extra latency for stream data that crosses multiple brokers
	Works well when subscribers are steady so that information exchange can be arranged with minimal inter-broker interactions; when subscribers vary, published information may have to traverse multiple brokers before it reaches the target, which may pose a burden to the brokers and affect system performance.

	Regional broker
	Requires around 20 to 30 brokers distributed regionally (perhaps by ARTCC or other large facility);

topology can be flat, general peer-to-peer or can be hierarchical.

	Best suited for the situation when data exchange occurs mostly regionally (between large facilities) and locally with few exchanges across regions
	Brokers can be linked fully or partially meshed; medium broker management complexity.
	When data exchanges occur mostly regionally, process latency may be reduced to minimal
	Works well when subscribers are steady so that information exchange can be arranged with minimal inter-broker interactions.

	Cross-region broker
	Requires less than 20 brokers; they are distributed mostly regionally with some across regions; topology can be flat, general peer-to-peer.
	Suited for the situation when data exchange occurs mostly regionally (between large facilities) and locally with some across regions
	Low broker management

complexity
	For locally exchanged data, it may take non-negligible time for data to be processed by the cross-regional broker
	Works for both steady or variable set of subscribers

Based on the above discussion, a summary of the broker topology options and selection information relevant to SWIM is provided inTable 4‑20. These options and associated characteristics have been used in Section 5 to generate alternative physical architecture alternatives for SWIM.
Table 4‑20: Summary of the Topology Options

	Options #
	Broker Topology Options
	Factors That Affect the Decision
	How to Resolve
	Impact on Overall Effectiveness of the Architecture

	1
	Local
	Data Distribution (Best suited for the situation when data exchange occurs mostly locally, some regionally, and a few across regions)
Medium broker management complexity,

Extra latency for stream data that crosses multiple brokers

Works well when subscribers are steady
	NAS data flow analysis, performance analysis, technology review (for using autonomic computing components)
	High

	2
	Regional
	Data Distribution (Best suited for the situation when data exchange occurs mostly regionally (between large facilities) and locally with few exchanges across region).
Medium broker management complexity,

When data exchanges occur mostly regionally, process latency may be reduced to minimal.

Works well when subscribers are steady so that information exchange can be arranged with minimal inter-broker interactions

	NAS data flow analysis, performance analysis, technology review (for using autonomic computing components)
	High

	3
	Cross-Regional
	Suited for the situation when data exchange occurs mostly regionally (between large facilities) and locally with some across regions
Low broker management complexity,

For locally exchanged data, it may take non-negligible time for data to be processed by the cross-regional broker Works for both steady or variable set of subscribers
	NAS data flow analysis, performance analysis, technology review(for using autonomic computing components)
	High

4.6 Data Granularity Options

Data granularity refers to the level of data detail that a publisher can specify in a published data object such that subscribers can specify their need of data to the same level of detail. A challenge in designing an architecture is determining the required level of the data granularity for a published information object.

If the granularity of an information object is very low then many information objects may have to be generated because each contains only a limited amount of information. Low granularity does allow subscribers to express their data needs more precisely, but it might make the set-up and programming activity more difficult and reduce the performance of the system. On the other hand, if the granularity is very coarse, subscribers can only specify their desired data at the same granularity level. They may end up obtaining more information than they need and may have to filter received information further in order to find the exact information they require. These two alternative granularity levels are illustrated in Figure 4‑22.

[image: image41.wmf]Filter Function

Data of Interest

SWIM

Broker

Broker

IO

IO

IO

IO

SWIM

Broker

Broker

IO

IO

IO

IO

IO

IO

IO

IO

Coarse Data Granularity

Fine Data Granularity

Data Provider

Member

Data Consumer

Member

Data Provider

Member

Member

Interface

Member

Interface

Member

Interface

Member

Interface

Data Consumer

Member

publish

publish

Figure 4‑22: Data Granularity Alternatives

Four levels of granularity have been defined for NAS data. They are all geographic-based. There could be other types of data granularity such NAS domain-based, but based on current geographical layout of the FAA NAS system, geographic-based data granularity is a best fit for the SWIM services. The four levels of data granularity include:

4. By Region – Data can be queried/subscribed by geographical region. For instance, all Cleveland related information

5. By NAS Data Domain -- Data can be queried/subscribed by NAS data domains. For instance, a subscriber subscribes to all Cleveland Weather Information

6. By Processing Systems Outputs– Data can be queried/subscribed by NAS processing systems/sensors. For instance, a subscriber subscribes to all Cleveland wind shear information
7. By SWIM Member Specified Constraints – Data can be queried/subscribed by subscriber specified constraints. For instance, a subscriber subscribes to Cleveland wind shear information between time 9:00am and 1:00pm

Subscriptions/queries with coarse granularities (such as Level 1, by region) will result in large volume of data (and traffic) to be sent to the subscribers. Sometimes this might be more than what the subscriber needs, and subscribers must filter out unneeded data. Subscriptions/queries with fine granularities (such as Level 4, by user specified constraints) will result in relatively small amounts of data (and traffic) to be sent to the subscribers. However, to obtain all needed data, a subscriber may have to have a large number of subscriptions. The optimal choice of data granularity will maximize satisfaction of the subscriber’s data needs while minimizing data traffic.

The choice of data granularity affects two aspects of SWIM: level of responsibility for data classification and filtering, and the subscription mechanism. Figure 4‑23 shows where the filtering responsibility lies for different levels of granularity. In this figure, the SWIM publisher member interface provides the capability to classify information by region, by NAS domain and by processing centers/sensors. For instance, information objects published from a publisher interface already contains region information in the IP address. The domain and data source information (processing center/sensors) is also included in the key attributes defined in the information objects. Publishers may also specify their own specifically defined attributes for subscriptions/queries at finer granularity. When a broker receives these information objects, the broker can extract the region/domain and processing systems information from the information objects (either through their IP address or through attributes values in information objects). Therefore, a broker provides the capability to map incoming information objects into a subscription, filters out uninterested information objects, and then passes needed information objects to interested subscribers. Thus, a broker can filter information at Level 1, 2, and 3 granularity. Subscribers can then further filter out needed information at a user-specified constraint level for their own use.

[image: image42.wmf]

SWIM Interface of

Client

SWIM Interface of

Server

Broker

SWIM Node

Region

Member

-

Specified

Constraints

(e.g., time, altitude)

Processing

System/Sensors

NAS Domain

Granularity of Information Specification

More Specific

Classify Information

Constraint

-

dependent

Filter Information

Fusion/presentation/final

filtering of Information

Broker responsibility

ends

No responsibility

SWIM Interface of

Client

SWIM Interface of

Server

Broker

SWIM Node

Region

Member

-

Specified

Constraints

(e.g., time, altitude)

Processing

System/Sensors

NAS Domain

Granularity of Information Specification

More Specific

Classify Information

Constraint

-

dependent

Filter Information

Fusion/presentation/final

filtering of Information

Broker responsibility

ends

No responsibility

Figure 4‑23: Data Granularity Options

Subscription mechanisms can be classified
 into three categories: channel-based, subject-based, or content-based. In a channel-based subscription, a subscriber subscribes to published information objects that are sent across an explicitly identified channel, a discrete communication path.

Subject-based mechanisms extend the concept of a channel with a more flexible addressing mechanism; in this case publishing contains an attribute to determine where the information object is heading. In subject-based subscriptions, subscribers can express their interest in many subjects/channels by using some expressions and those expressions are evaluated against the subjects of published information objects. In this case one subscriber can subscribe to multiple subjects and one published information object can match to multiple subscriptions.

Content-based subscriptions allow for a great amount of user flexibility in specifying information needs and requirements, and can be described as follows
:

The term “content-based” characterizes those systems whose subscriptions can express predicates over the whole content of a publication. This is in contrast with channel-based and subject-based systems, in which only a few well-known attributes of a publication are available for selection to subscriptions. The strength of content-based publish/subscribe middleware over a multicast network service is the greater expressive power of its data model and of its subscription language. Its weakness is scalability. In fact, only a few content-based publish/subscribe middleware services are implemented as true distributed systems, and none of the existing ones is designed to achieve levels of scalability comparable to those of existing network communication infrastructures, such as IP.
The advantages of content-based systems over subject-based systems can be summarized as follows
:

· The content-based model provides more flexibility because of the expressive power of its data model and of its subscription language. A subscriber can choose filtering (selection) criteria along as many dimensions as there are event attributes. In a stock trading example a subscriber could subscribe to any combination of the event attributes such as issue name, price, and volume.

· The content-based model does not require the administrative overhead associated with defining and maintaining a large number of subjects.

· The content-based model is more general than the subject-based model, as it could be used to implement a subject-based system. In a stock trading example, the event predicated on (issue name = “GE” & price = any) would provide the same information as the subject-based event subscription of subject “GE”.

The major disadvantage of the content-based model is its scalability, that is, it becomes much less efficient as the size of the distributed network and the number of publishers and subscribers increases. This is because
:

· It becomes computationally difficult to efficiently match a complex event against a large number of subscribers on a single message broker (router).

· It becomes difficult to efficiently multicast events within a network of message brokers when: 1) the geographically distributed network has limited bandwidth, and 2) as the number of publishers and subscribers becomes very large.

These two problems are efficiently handled in subject-based systems as follows:

· Matching is performed with a look-up table, which consists of a fixed, limited number of subjects.

· Multicasting is handled by assigning a single, separate multicast group per subject and multicasting each event to the appropriate multicasting group.

The preceding discussion has introduced two, often conflicting, and fundamental characteristics of publication-subscription systems: expressiveness and scalability. These can succinctly defined as follows
:

Scalability means that the service must be available over a wide-area network populated by numerous components each one producing and consuming many events. Expressiveness demands a rich subscription language that gives applications a flexible and fine-grained selection mechanism to describe precisely those events or combinations of events in which they are interested.

As described above, expressiveness of a publication/subscription event service is chiefly determined by its subscription language. Two aspects of the subscription language are crucial to the expressiveness of an event service: scope and expressiveness (or power), defined as follows
:

· The scope of the selection predicates: The part of the event model that is visible within subscription expressions. In some cases, events have an articulated structure that allows the encoding of much information, but only a limited and/or simple part of that structure can be used as selection criteria in subscriptions.

· The expressiveness of the selection predicates: Determines the sophistication of subscriptions. In practice, a subscription language is expressive if it has various basic selection predicates and the ability to combine predicates for the selection of one single event at a time as well as for grouping events into higher-level abstractions.

These two characteristics can be used to classify subscription languages used in publication-subscription systems. Table 4‑21 shows how such a classification can be made. Within the table different types of publication-subscription systems are classed according to the scope and expressiveness of their subscription languages. In the figure the scope of the subscription language is defined according to whether it uses a single notification of a single field (attribute) or multiple fields, or multiple notifications of multiple fields to match published events to subscriptions. For expressiveness, there are three levels of ascending sophistication: 1) a simple equality or matching test; 2) predicates: multiple filtering expressions with predefined operators for matching; and 3) expressions with user-defined operators, which includes multiple, correlated events forming defined “patterns”.
Table 4‑21: Classification of Subscription Languages

	
	
	Scope

	
	
	Single Publishing

One Field
	Single Publishing

Multiple Fields
	Multiple Publishing

Multiple Fields

	Expressiveness
	Simple Equality
	Channel-based

	Expressions with Predefined Operators

(Predicates)
	Restricted

Subject-Based
	Restricted

Content-Based
	Restricted

Content-Based

with Patterns

	
	Expressions with User-Defined Operators
	General

Subject-Based
	General

Content-Based
	General

Content-Based

with Patterns

To summarize, data granularity can be coarse or fine, and the selection of data granularity level impacts choice of filtering responsibility and the subscription mechanisms to be used in SWIM. This is illustrated in Table 4‑22.

Table 4‑22: Summary of Data Granularity Options

	
	Data Granularity

	
	Coarse
	Fine

	Filtering Responsibility/Complexity
	Publisher

duty
	Simple classification
	Publisher

duty
	Complex classification

	
	Broker

duty
	Simple filtering
	Broker

duty
	Complex

filtering

	
	Subscriber

duty
	Complex filtering
	Subscriber

duty
	Simple

filtering

	
	
	Simple subscription
	
	Complex subscription

	Subscription Mechanism
	Channel-based subscription
	Subject-based subscription

	
	Subject-based subscription
	Content-based subscription

Factors that affect the data granularity options will be the design of data model, the expressiveness of subscription language, and performance requirements.

Table 4‑23: Summary of the Data Granularity Options

	Options #
	Data Granularity Options
	Factors That Affect the Decision
	How to Resolve
	Impact on Overall Effectiveness of the Architecture

	1
	Coarse
	SWIM users can work find coarse data granularity services
	Data analysis and design analysis
	Medium to high

	2
	Refined
	SWIM users requires refined data granularity services and theses services can meet the overall NAS/SWIM performance requirements
	Data analysis and design analysis
	Medium to high

4.7 Data Storage Issues

As introduced in Section 4.2.2.6, SWIM may store certain exchanged data for archiving, retrieval, monitoring, and security purposes. Two types of data storage have been investigated for SWIM: data marts and data warehouses. Data marts are suitable for storing certain information objects for short-term, fast retrieval. Additionally it is recommended that data marts use relational databases for their performance and management conveniences. Data warehouses are suitable for storing long-term, archival data. They can be implemented as either relational databases or object-oriented databases. Key design issues related to SWIM data storage decisions include:

8. Whether or not to create new SWIM’s own data storage facilities as data marts or data warehouses or to use legacy NAS databases

9. Should SWIM interface to current FAA legacy databases directly through SWIM member interfaces (so that legacy databases are treated as subscribers) or indirectly through legacy processing centers?

10. Should data warehouses be updated by publishers, by subscribers, or both?

11. Should SWIM data warehouses store data in a common data format or store data in its original data format or target data format?

The advantages and disadvantages and related issues for these data storage issues are listed in Table 4‑24, and a summary of the SWIM decision factors related to data storage is presented in Table 4‑25.

Table 4‑24: Data Storage Issues - Advantages/Disadvantages and Related Issues
	Issue 1: Whether to create SWIM’s owned data storage or not

	
	Advantages
	Disadvantages
	Related Issues

	Create SWIM owned data marts
	Data marts can be built based on clearly defined information object structures; easy to build
	Can technology provide a “seamless” connection between the database capabilities and the pub/sub system?

	· Need to decide what data gets to stored in data marts and how many data marts to keep for SWIM

· How to do “sample archiving” for stream data?

	Create SWIM owned data warehouses
	Data warehouses can be “purpose built” to better fit SWIM needs/platforms
	Costly; cannot reuse legacy databases
	· Management of the data warehouses

	Transition of SWIM legacy databases to SWIM data warehouses
	Reuse current legacy databases; may save some cost
	May be difficult to implement
	· Can all legacy databases be transitioned to SWIM data warehouses?

· How to transition?

	Issue 2: How to interface to legacy databases

	
	Advantages
	Disadvantages
	Related Issues

	Interface to SWIM directly through member interface so legacy databases can be treated as a regular subscriber
	Legacy SWIM databases can be more independent and can subscribe to SWIM data directly
	SWIM databases need to be transitioned to be SWIM compliant (data format compliant and management compliant)
	· Need to translate SWIM data format to legacy databases

	Interface to SWIM indirectly through current systems such as processing centers
	No need to change legacy databases
	Database update is indirect, may increase latency
	· Are these legacy databases redundant when data warehouses are used in SWIM?

	Issue 3: Are data warehouses kept by publishers or by subscribers?

	
	Advantages
	Disadvantages
	Related Issues

	By publishers
	Quick update before data even gets published
	Data warehouse either contains one publisher’s data or has to coordinate other publishers’ data so as to keep multiple views of the same data
	

	By subscribers
	Multiple views of the same data can be kept in the data warehouse.
Warehouse can subscribe directly to SWIM for data.
	Data needs to be filtered and structured to put in a data warehouse
	

	Issue 4: What is the data format in data warehouses, a common data format or any other format?

	
	Advantages
	Disadvantages
	Related Issues

	Common data format
	Easy for query
	Need to put information objects in which may result in more data overhead
	

	Local data format
	Fast
	Data needs to translated
	

Table 4‑25: Summary of Data Storage Option Decisions for SWIM

	Options #
	Data Storage

Options
	Factors That Affect the Decision
	How to Resolve
	Impact on Overall Effectiveness of the Architecture

	1
	Whether to create SWIM’s own data storage or not
	FAA policy
	Policy making
	High

	2
	How to interface to legacy databases
	Legacy NAS databases
	Design analysis
	Medium

	3
	Are data warehouses kept by publishers or by subscribers?
	FAA policy
	Policy making
	Medium

	4
	What is the data format in data warehouses, common data format or any other format?
	Performance
	Data analysis, design analysis
	High

4.8 Network Management Alternatives

While a Simple Network Management Protocol (SNMP)-based network management architecture can be implemented to support SWIM, the recommended broker-based information management architecture offers the option of extending the broker responsibilities to the network management domain, resulting in a more fully integrated SWIM architecture. Although SNMP-based network management architectures, shown in Figure 4‑24, are widely used and straightforward to implement and use, (e.g. planned implementation in the NAS Infrastructure Management System (NIMS)), SNMP has known security weaknesses. SNMPv3 has corrected many of the security weaknesses; but two security threats that SNMP does not address are Denial of Service and Traffic Analysis attacks
.
In an SNMP-based system, one or more workstations may function as the management station, manned by an administrator. SNMP is primarily a polling-based protocol. The manager stations use SNMP to issue commands to get or set the value of a parameter on a remote managed object (e.g., networked device such as client, server, database, router). The syntactical structure of the SNMP messages is defined by the Abstract Syntax Notation (ASN.1), a machine-independent language. The manager’s access to the parameters of a managed device is limited by the pre-defined structure of the Management Information Base (MIB), the logical database for the network management information. The received command is performed by the agent, software residing on the managed device; the agent retrieves/sets the requested parameter value via the MIB and sends its response back to the manager using SNMP responses. The agent may also issue an unsolicited response, or trap, to the manager in the event of pre-defined alarm or error conditions such as a link outage or node failure. SNMP’s suitability for SWIM is summarized as follows:

· SNMP-Based: Network management functions are based on the standard SNMP protocol as shown in Figure 4‑24.

Advantages: SNMP is simple and widely used

Disadvantages: SNMP has security weaknesses; however, SNMP-v3 has corrected some of the security problems

[image: image43.wmf]Manager

Managed

Object

Agent

Macros ASN

-

1

Get/Set

Trap

Control

Monitor

MIB

Manager

Managed

Object

Agent

Macros ASN

-

1

Get/Set

Trap

Control

Monitor

MIB

Figure 4‑24: SNMP-based Network Management

In contrast, an object-oriented, broker based network management architecture, such as a CORBA-based architecture shown in Figure 4‑25, is more robust and secure, more extensible and customizable, and could be implemented as an extension to the SWIM Information Management functional component. However, although such architectures have evolved significantly in the past ten years, they are still less widely deployed than SNMP-based systems. The CORBA-based approach eliminates the need for a rigidly structured MIB and SNMP-defined commands, because network management commands are issued as transparent operation invocations on managed objects. Furthermore, CORBA can be used to maintain a logical link between multiple network managers, to facilitate the distribution of management responsibilities to enhance scalability and to enable the assumption of new responsibilities to support failover. In addition, CORBA supports the flexibility to use legacy SNMP agents and migrate toward CORBA applications in the future.

The Object Request Broker (ORB) is responsible for translating the object requests and operations between the manager and managed object, or between to managers. CORBA’s Interface Definition Language (IDL) specifies the interfaces for each object, providing the means for each object to inform clients (e.g., the network manager) which operations are provided and how they can be invoked. These operations may be invoked by clients through IDL stubs. The General Inter-ORB Protocol (GIOP), or the Internet Inter-ORB Protocol (IIOP), allows for the communication between ORBs. It is responsible for ensuring a common data representation and for enabling message transfer.

CORBA’s suitability for SWIM is summarized as follows:

· CORBA-Based: Network management functions are based on the CORBA standard, as shown in Figure 4‑25.

Advantages: Compatibility with CORBA-based Information Management; stronger security

Disadvantages: Less widely deployed

[image: image44.wmf]IDL

Client

Transparent Operation

Invocation

ORB

ORB

GIOP

Object

GIOP: General Inter

-

ORB Protocol

IDL

Client

Transparent Operation

Invocation

ORB

ORB

GIOP

Object

GIOP: General Inter

-

ORB Protocol

Figure 4‑25: CORBA-based Network Management

In summary, the main options for network management are SNMP-based or CORBA-based. Factors that might affect the decision are COTS availability and compatibility with NIMS. Its impact on the overall effectiveness of the architecture is medium to high. This is summarized in Table 4‑26.
Table 4‑26: Summary of Network Management Options

	Options #
	Network Management

Options
	Factors That Affect the Decision
	How to Resolve
	Impact on Overall Effectiveness of the Architecture

	1
	SNMP-based
	NIMS mechanism, if NIMS uses SNMP-based, then it is easier to use SNMP-based for SWIM
	Design Analysis
	Medium to high

	2
	CORBA-based
	If SNMP security weakness is a concern, then use CORBA-based, but need to check COTS availability
	Design Analysis
	Medium to high

4.9 SWIM Security Discussion

According to FAA Order 1370.82, Information Systems Security Program, systems approved to operate in the NAS must first be certified by an appropriate Information System Security Certifier (ISSC) and authorized by a Designated Approving Authority (DAA). Of course, this would apply to SWIM. The purpose of this section is to identify security issues and threats that will be raised with the introduction of the SWIM concept in the NAS. This section identifies SWIM security goals; potential threats that will target these goals; countermeasures in the form of policies and technologies that could be employed to mitigate these threats; and high-level security requirements. This section includes a discussion of the need for one or more Security Certification and Authorization Packages (SCAPs)
 for SWIM to provide the avenue for the security Certification and Authorization mandated by 1370.82.

4.9.1 Need for Information System Security

The goal of information system security (ISS) is to enable an organization to meet all of its mission/business objectives by implementing systems with due care considerations of IT-related risks to the organization, its partners and customers.

Every security solution is unique to the environment and the enterprise specifics. SWIM, as an enterprise, will have its own unique security requirements, some of which will be defined by the applications SWIM will host, IT systems (H/W, S/W, and communications) SWIM will deploy, and operational security environment SWIM will operate in. The practice of information security is built around the concept of risk management. Risk is typically considered to be a combination of threats and vulnerabilities, where the potential for a threat to act on an information environment is made possible by the vulnerabilities existing in that environment. Determination of specific SWIM vulnerabilities and the impact of information security failures are beyond the scope of this present study but would be performed for the Vulnerability Assessment, a key part of the SCAP.

The ability for a threat to cause problems can be characterized as a combination of capability and intent, where capability is a combination of access and skill. Threat access can be mitigated through access control mechanisms and threat skill can be mitigated through policies and obscurity of technical details.

Managing risk is an iterative process of determining the threats, vulnerabilities, potential countermeasures, and the impact of information security failure. Countermeasures can include not only technologies but policies also.

So, the security framework followed for SWIM consists of the following:

· Identifying SWIM security goals

· Identifying potential threats

· Identifying Threat Countermeasures:

Policies: Identified from NAS Protection Profile (PP) template
 and FAA Order 1370.82

Technologies: Identified from CNS-ATM Tasks 11, 14, and 15, FAA ISS Program Handbook, Version 2, March 2001

· Identifying high level SWIM security requirements.

One of the most critical challenges to the SWIM security engineers will be how to pick the best suite of technologies that provides the capabilities required for the unique security challenges in the SWIM operational environment. To do this, it is critical that the contributions of the technologies to specific security goals be understood. For this purpose some technologies are identified that can help achieve security goals of SWIM.

4.9.2 Security Goals

The SWIM concept is based on the principles of delivering the right NAS information to the right place at the right time to facilitate coordination, cooperation and informed decision-making by NAS users and service providers. The overarching SWIM security goals are to allow no harm to SWIM, and likewise, to prevent SWIM from harming other NAS systems. Implementing SWIM with security in mind will meet the multiple aspirations of increased distribution of unchanged or unmodified NAS data (right NAS information) to those with a need to know (right place or right people), and without an undue delay, while providing multi-layered protection. According to Order 1370.82, the FAA “shall ... ensure that systems and applications used by or for the FAA provide appropriate confidentiality, integrity, authenticity, and availability. These are defined as follows:

· Confidentiality - To ensure that enough secrecy or privacy is been maintained. Confidentiality ensures that data are held in confidence and protected from unauthorized disclosure. Confidentiality is often not the most important security goal for SWIM IT systems

· Integrity - To ensure that information delivered is not altered in any way. Integrity is the property that data has not been changed, destroyed, or lost in an unauthorized or accidental manner. Unauthorized change results in an integrity violation. Integrity also includes the notion of accuracy and consistency of the information that data values represent, rather than of the data itself. Integrity is of the utmost importance to the SWIM.

· Authenticity - To ensure that the information is delivered to its intended user (system or person). Authenticity is the verification that the information is accessed, relayed, modified, or created by an authorized entity that may be a person or a device (system). A user’s authentication is determined by its login validity.

· Availability - To ensure that the system and information is accessible when needed without an undue delay. Availability is the property of a system or a system resource being accessible and usable upon demand by an authorized system entity, according to performance specifications for the system; i.e., accessible when needed without undue delay. Threats that affect availability, such as Denial of Service (DoS) attacks, are already considered as a key factor in SWIM System risk assessments.

These goals, which are clearly visible to a SWIM entity, basically serve the purpose of security safeguards. But, at the same time, there also may be a need for a mechanism that ensures that the actions of a system entity (human or IT), already satisfying the goals of integrity, authenticity, availability, and confidentiality, may be traced uniquely to that entity to verify the actions taken. This adds one other ISS goal that SWIM should satisfy, namely:

· Accountability - To ensure that correct actions are been taken by the SWIM system entities. Accountability is a system’s ability to determine the actions and behavior of an individual within a system, and to identify that particular individual. Audit trails and logs support accountability.

4.9.3 Threats to SWIM Security

A threat in the SWIM environment is any circumstance or event with the potential to cause harm through the disclosure, modification or destruction of information, or by the denial of critical services that can be either via logical error/attack or physical human error, hardware/software failures, or natural disaster.

Threats specific to SWIM have been derived and are documented in Appendix C. Many of the threats identified in these tables are drawn from NAS Protection Profile template (shown with * in column 1) and many others have been developed specifically for the SWIM environment.

The principal internal NAS threat agents would be SWIM users, who are basically the SWIM application designers, developers, installers, end-users, administrators, and maintenance personnel who may make unintentional errors or have the capability to act with malicious intent. External attackers are also identified as threat agents because SWIM will have numerous external interfaces.

Operational environment threats are considered relevant to the SWIM system’s personnel and IT environment. The following potential threat agents have been identified for these:

· Personnel

· SWIM system administrators (errors, non-malicious intent)

· System maintenance personnel (errors, non-malicious intent)

· External attackers

· IT System Failure Threats

· Hardware

· Software

· Communications

Appendix C provides several tables identifying threats applicable to the SWIM system, and derived from NAS PP template. To be consistent with other threat tables, the identified threats are segregated into what areas they fit in, such as physical, personnel, or IT. And in order for the threats to be easily recognizable as to what areas they represent, a threat name has been assigned to each threat with a small description.

4.9.4 Countermeasures

This section identifies and derives countermeasures guidance in the form of policies and technologies that would reduce risk by mitigating potential threats to SWIM and its components/elements.

4.9.4.1 SWIM System Policy Guidelines

In simple terms, a risk is realized when a threat takes advantage of a vulnerability to cause harm to the system. Security policy provides the baseline for implementing security controls to reduce vulnerabilities and reduce risk. A security policy specifies how to protect physical and information technology assets. It is often considered to be a "living document," that is, continuously updated as technology and personnel requirements change.

Instruction for the PP Author: This section of the SWIM System PP Template identifies policy guidance from multiple FAA and Federal documents. The PP author should review and validate this policy guidance in the context of a Risk Management activity for the specific SWIM System as well as identify any new policies that may be appropriate for this system (or that have arisen since the publishing of this document.) Because this policy is drawn from standing FAA documents, if it determined that any of them do not apply, a rationale should be included justifying this decision.

The SWIM system policy guidance listed in the following table covers a broad range of security specifications that are needed to meet the four goals. Included in the list are
:

· Mechanisms to associate individual entities (human and information systems) with specific actions. They include notions such as identification, authentication and auditing.

· Mechanisms to ensure resources are available when requested and that there are recovery mechanisms in place when a failure occurs.

· Requirements for protection of information from unauthorized access to information in an information system as well as controlled access to IT processing resources.

· Policy guidance dealing with general secure installation and operation of IT that includes the need for appropriate documentation, training, and review processes to operate a system securely. It also includes a number of specific policy statements that protect IT resources from being compromised.

· Requirements for protecting information as it is transmitted from one point to another over a potentially unprotected medium.

· Policies that describe the rules for identifying when the IT system, executables, or data have been corrupted.

A table has been included in Appendix C to identify some generic SWIM policies, which are developed/derived based on the understanding of SWIM and its operations security policies, applicable to the security of the SWIM applications, client-server, and graphical user interface (GUI).

A separate table has been developed to identify some operational environment SWIM policies, which are developed/derived based on the understanding of SWIM and its operations security policies, applicable to the security of the SWIM applications, client-server, and graphical user interface (GUI).

Additionally, identified policies for SWIM generally applicable to any SWIM system/sub-system (Surveillance system, Weather system, etc.) have been identified (see Appendix C). Policy statements discussed in this table have been drawn from FAA and other documents, in particular:

· FAA NAS System PP

· FAA ISSA

To be consistent with the approach of presenting SWIM specific information, the identified policies are segregated into specific areas they fit in, such as physical, personnel or IT. And in order for the policies to be easily recognizable as to what areas they represent, a policy name has been assigned to each policy with a small description.

4.9.4.2 SWIM ISS Technologies

This section looks at security technologies as countermeasures by presenting a methodology of what technology to select first and then show where, when, and how they fit the best. SWIM information systems must have adequate technical safeguards to ensure the security of processed data. Security goals (confidentiality, integrity, authenticity, availability, and accounting), described earlier, are the elements of information security field that are generally recognized as key to preserving data security. In order to achieve the goals for SWIM, proper information security mechanisms must be employed. The following are the five major information security mechanisms:

· Encryption: Scrambling understandable data (information) into unintelligible data, for the purpose of securing it from unauthorized disclosure to an unauthorized entity, and then restoring it back to its original form (decryption).

· Access Control: Controlling access to information, information systems and associated networks, for the preservation of their confidentiality, integrity, and availability, based on user’s identity or their operational role.

· User Identification and Authentication: Securely determining a user’s identity or operational role. A user’s authentication is determined by its login validity.

· Malicious Content Detection: Examining the incoming data for any malicious content it may be carrying and that might need to be blocked, detected, and corrected.

· Physical and Environmental Controls (out of the scope of this study)

One way to assess the effectiveness of available security technologies is to analyze them individually in terms of a framework or model that maps what security technologies satisfy the security mechanisms employed and what goals are achieved. The security technology assessment matrix (STA) below summarizes the most widely used security technologies in terms of what security goals they achieve.

Table 4‑27: STA Matrix: Security Mechanisms vs. Security Attributes

	Security

Mechanisms
	Security Attributes

	
	Confidentiality
	Integrity
	Availability
	Authenticity
	Accountability

	Encryption
	· Encryption System

· VPN

· Public Key Infrastructure (PKI)

· Link encryption

· Digital Signature
	· Public Key Infrastructure (PKI)

· VPN

· Digital Signature

	N/A
	· Public Key Infrastructure (PKI)

· Digital Signature
	· Public Key Infrastructure (PKI)

· Digital Signature

· VPN

· Link Encryption

	Access Control
	· Firewall

· Network Access Controller

· Access Control Management System

	· Firewall

· Access Control Management System

	· Firewall

· Network Access Controller

· Access Control Management System

· Security Monitoring
	· Firewall

· Network Access Controller

· Password Service

· Access Control Management System
	· Firewall

· Network Access Controller

· Password Service

· Access Control Management System

· Security Monitoring

	Identification & Authentication
	· Password Service

· Authentication System
	N/A
	· Password Service

· Authentication System

· Security Monitoring
	· Password Service

· Authentication System
	· Password Service

· Security Monitoring

	Malicious Content Detection
	N/A
	· Virus Detection System

· Intrusion Detection System
	· Virus Detection System

· Intrusion Detection System

· Security Monitoring

· Vulnerability Assessment Software
	N/A
	· Intrusion Detection System

· Security Monitoring

Together with analyzing the information security measures in terms of their ability to achieve security attributes (goals), which covers the first level of protective actions, it is also important to analyze them in terms of security phases, which covers the processes associated with detecting problems and reacting to them. The phases include:

· Protection – As a first line of defense to mitigate vulnerabilities and threats, the goals here are to deny unauthorized users access to information or system and to engineer systems to be resistant to threat actions.

· Detection – As a failure of any security mechanism in place, the goal here is to detect any threat and issue an alarm.

· Correction – This phase includes all activities associated with rectifying problems and regaining full operational capabilities. This phase also includes actions like hot-switching entire operations to redundant or back-up systems/facilities.

The following table maps the security technologies to the phases they satisfy.

Table 4‑28: STA Matrix – Security Phases

	Security Technologies/Processes
	Security Phases

	
	Protect
	Detect
	Correct

	Access Control Management System
	X
	X
	N/A

	Authentication System
	X
	X
	N/A

	Encryption System
	X
	N/A
	N/A

	Digital Signature
	X
	N/A
	N/A

	Firewall System
	X
	X
	N/A

	Intrusion Detection System
	
	X
	N/A

	Link Encryption
	X
	N/A
	N/A

	Network Access Controller
	X
	N/A
	N/A

	Password Service
	X
	N/A
	N/A

	Public Key Infrastructure (PKI) System
	X
	N/A
	N/A

	Routing Table Authentication
	X
	N/A
	N/A

	Security Monitoring
	N/A
	X
	N/A

	Virtual Private Network
	X
	N/A
	N/A

	Virus Detection System
	X
	X
	X

	Vulnerability Assessment Software
	N/A
	X
	N/A

Now, given the list of the security technologies satisfying the specific SWIM goals, it is important to understand what enterprise elements of SWIM these technologies provide protection for. To achieve information protection over the SWIM enterprise, the information architecture can be categorized in dimensions that must be protected. Dimensions can be categorized as:

· Information System: The infrastructure, which comprises of computers, servers, databases, users, etc. either, itself must be protected against unauthorized intrusions, malicious content, and denial of service attacks.

· Information Domain: Communities-of-interest within the infrastructure must be afforded freedom to move and process information within a virtual enclave that provides protection.

· Information Content: At this level the end-to-end security is provided to data, whether at rest or in transit, for the purpose of its security from unauthorized disclosure to an unauthorized entity.

Appendix C shows a list of technologies pertaining to each of these dimensions and the goals they satisfy in that specific dimension.

4.9.4.3 Defense in Depth Applies to SWIM

In keeping with ISS architecture practices presented in the FAA ISSA, it can be shown that a defense-in-depth approach, which is provided by employing multiple security technologies at various locations (both physical and logical) in an information system, is most appropriate for SWIM. In this approach no single mechanism is relied upon to provide complete information security; security mechanisms are applied layer-by-layer to defeat any attempt by an adversary to compromise the information system. A high level three layer defense in depth representation is shown in Figure 4‑26. These are briefly described in the following paragraphs.

[image: image45.wmf]Zone 1: End

-

Systems (Platform Level

Security

Examples:

Zone 2: Inter/Intra Enclave (Network

Level Security)

Examples:

Zone 3: FTI (Manage Network

Boundary)

–

(WAN Level Security)

Interconnect

Zone 3

Security

Interconnect

Zone 2

Security

•

Access Control Management System

•

Digital Signature

•

Encryption System

•

Intrusion Detection Systems

•

Password Service

•

PKI

•

Security Monitoring

•

VPN

•

Virus Detection System

•

Vulnerability Assessment Software

Zone 1: End

-

Systems (Platform Level

Security

Examples:

Zone 2: Inter/Intra Enclave (Facility

Level Security)

Examples:

Zone 3: FTI (Manage Network

Boundary)

–

Examples:

Interconnect

Zone 3

Security

Interconnect

Zone 2

Security

•

Access Control Management System

•

Firewalls

•

Authentication System

•

Intrusion Detection Systems (IDS)

•

Network Access Controllers

•

Password Service

•

PKI

•

Routing Table Authentication

•

Security Monitoring

•

Virtual Private Networks (VPN)

•

Virus Detection System

•

Vulnerability Assessment Software

•

Access Control Management System

•

Firewalls

•

Authentication System

•

Intrusion Detection Systems (IDS)

•

Password Service

•

PKI

•

Routing Table Authentication

•

Virtual Private Networks (VPN)

•

Security Monitoring

•

VPN

•

Virus Detection System

•

Vulnerability Assessment Software

Zone 1: End

-

Systems (Platform Level

Security

Examples:

Zone 2: Inter/Intra Enclave (Network

Level Security)

Examples:

Zone 3: FTI (Manage Network

Boundary)

–

(WAN Level Security)

Interconnect

Zone 3

Security

Interconnect

Zone 2

Security

•

Access Control Management System

•

Digital Signature

•

Encryption System

•

Intrusion Detection Systems

•

Password Service

•

PKI

•

Security Monitoring

•

VPN

•

Virus Detection System

•

Vulnerability Assessment Software

Zone 1: End

-

Systems (Platform Level

Security

Examples:

Zone 2: Inter/Intra Enclave (Facility

Level Security)

Examples:

Zone 3: FTI (Manage Network

Boundary)

–

Examples:

Interconnect

Zone 3

Security

Interconnect

Zone 2

Security

•

Access Control Management System

•

Firewalls

•

Authentication System

•

Intrusion Detection Systems (IDS)

•

Network Access Controllers

•

Password Service

•

PKI

•

Routing Table Authentication

•

Security Monitoring

•

Virtual Private Networks (VPN)

•

Virus Detection System

•

Vulnerability Assessment Software

•

Access Control Management System

•

Firewalls

•

Authentication System

•

Intrusion Detection Systems (IDS)

•

Password Service

•

PKI

•

Routing Table Authentication

•

Virtual Private Networks (VPN)

•

Security Monitoring

•

VPN

•

Virus Detection System

•

Vulnerability Assessment Software

Figure 4‑26: Security Technologies per Zone

4.9.4.3.1 Zone 1 Security Technologies/Processes (Platform Security)

Considered to be the inner-most layer defense mechanisms, these security technologies are basically applied at the end-systems, like workstations, servers, databases, and mainframes. The security technologies at this level include:

· Access Control Management System

· Digital Signature

· Encryption System

· Intrusion Detection Systems

· Password Service

· PKI

· Security Monitoring

· VPN

· Virus Detection System

· Vulnerability Assessment Software

4.9.4.3.2 Zone 2 Security Technologies/Processes (NAS Operational Facility Level)

Deployed as a part of an intranet, Zone 2 security technologies take care of end user networks that have similar security requirements and provide integrated security for the site LAN. Zone 2 security technologies include:

· Access Control Management System

· Firewalls

· Authentication System

· Intrusion Detection Systems (IDS)

· Network Access Controllers

· Password Service

· PKI

· Routing Table Authentication

· Security Monitoring

· Virtual Private Networks (VPN)

· Virus Detection System

· Vulnerability Assessment Software

4.9.4.3.3 Zone 3 Security Technologies/Processes (Wide Area Network Level)

Deployed at the boundary between SWIM node/facility network (intranet) and the FAA telecommunication network infrastructure (e.g. FTI), Zone 3 security technologies include:

· Access Control Management System

· Firewalls

· Authentication System

· Intrusion Detection Systems (IDS)

· Password Service

· PKI

· Routing Table Authentication

· Virtual Private Networks (VPN)

· Security Monitoring

· VPN

· Virus Detection System

· Vulnerability Assessment Software

4.9.5 SWIM Security Objectives

In general, security objectives are driven by the SWIM security goals. Security objectives offer a more concrete vision of the mechanisms to be implemented by the system. The process of determining SWIM System objectives begins by examining the threats, policies and the rest of the operational and IT environment.
SWIM security objectives reflect the stated intent to counter identified threats to SWIM, comply with any organizational security policies, and identify responsibilities for the SWIM system and for its operational environment. Security objectives based on the NAS PP are identified in Appendix C. They are based on preliminary assessment of the potential threats to SWIM (and its operating environment) and the identified/developed SWIM policies.

4.9.6 Security Requirements

This section briefly describes how high level SWIM security requirements can be developed, based on:

· The Common Criteria for Information Technology Security Evaluations, Version 2.1, August 1999, ISO /IEC 15408: 999.

· NAS PP

The basic methodology to identify and develop security requirements is on the framework of developing a protection profile (PP). Since the PP acts as a record of the security analysis performed during requirement generation process, it assists in conducting a comprehensive analysis of SWIM goals, threats, policies, objectives, and assumptions that derive SWIM requirements in thirteen major functional areas.

Since SWIM is still evolving, the threats, policies, objectives identified and developed are very generic, but certainly provide a preliminary evaluation of the framework followed to derive SWIM security requirements. However, in order to generate security requirements for SWIM System/Sub-Systems, risk assessment will have to be conducted that will determine the security concerns for SWIM. These security concerns will drive the selection of appropriate ISS mechanisms in the form of functional and assurance security requirements. Performing a risk assessment and, thus, developing security requirements is beyond the scope of this task and subject of future work.

4.10 Technology/Implementation Options

The FAA is an organization that is both large and complex with numerous partners that provide information as well as systems scattered throughout the United States. Therefore, it is recommended that SWIM be based on and implemented using industry standard technology. Using industry standard technologies will enable SWIM to satisfy the following implementation objectives:

· Platform independence

· Language independence

· Protocol independence

· Data portability

· Application portability

· Scalability

· Interoperability

· Flexibility

In this section, a multi-tiered SWIM architecture is introduced. The data presentation layer, the application logic/middleware layer, as well as the resource layer (database management), are presented and related technologies are discussed.

4.10.1 Multi-tiered SWIM Architecture

SWIM can be represented a multiple-tiered architecture (not to be confused with the ISO OSI protocol stack) as shown in Figure 4‑27. This architecture and a discussion of each of its constituent layers are briefly described in the following paragraphs.

[image: image46.wmf]Data Presentation

(Presentation Layer)

Business/Application Logic

(Application Layer)

Distributed Computing

(Middleware Layer)

Member Interface

MDR

IOR

Data

Marts

Data

Warehouse

Security Assurance

Network Management

Network Management

Data Management

1

st

Tier

2

nd

Tier

3

rd

Tier

Figure 4‑27: Three-Tiered SWIM Software Hierarchy

1st Tier -- Presentation Layer

The main purpose of a presentation layer is to separate the data content from the date presentation. Data content is the actual data that to be shared by SWIM members and data presentation is the formatting of that data so that the data can be exchanged by SWIM. The main distinction for SWIM is that the content is universal for an application, and the same content is valid no matter what type of formatting must occur. Presentation on the other hand is specific to individual members (Java Application, web browser, and etc.).

2nd Tier -- Application and Distribution Middleware Layer

The application layer implements the “business logic” and can be used to interact with many SWIM members; they, however, rely on the third tier to get data from legacy systems, equipment, or databases. The Application Layer can handle functions such as registration, security policy implementations, and system administration. This layer augments distribution middleware by defining higher-level domain-independent services that focus on programming “business logic”.
 Examples of application layer technology products are Sun’s J2EE and Microsoft’s .NET.

The distribution middleware (Distributed Computing) layer is used by the application layer to access third tier legacy applications, equipment and databases. This part of SWIM software makes the intricate details and incompatibilities of the third tier system transparent to the members and makes publish/subscribe/query/and messaging possible across FAA and its partners. Distribution middleware avoids hard-coding client and server application dependencies on object location, language, OS, protocols, and hardware.

Examples of distributed middleware technologies are OMG CORBA, Sun’s Remote Method Invocation (RMI), and Microsoft’s Distributed Component Object Model (DCOM).

3rd Tier -- Resource Layer
The third tier, data management, is the resource layer. Its main functions are to extract data and perform actions on data. This layer is transparent to SWIM members; it communicates with the 2nd tier through specific protocols.

Security Assurance and Network Management are provided across all three tiers. Security assurance is discussed in 4.9, while Network Management has been discussed in Section 4.8.

4.10.2 Technology Support

There is no single technology that can be applied to meet all SWIM architecture objectives across all three tiers; however, a combination of suitable technologies can meet these needs. Potentially useful technologies can be categorized into the following general areas for discussion of SWIM implementation:

· Data presentation (1st-Tier, presentation layer)

· Application development (2nd-Tier, Application and middleware layer)

· Distributed computing (middleware) (2nd-Tier, Application and middleware layer)

· Data storage (3rd-Tier, Resource layer)

These technology categories and their potential suitability for the SWIM physical architecture are discussed in the following subsections.

4.10.2.1 Data Presentation

One of the key objectives for SWIM is data portability. Standardizing on common data formats or information objects are very important to the implementation of SWIM. SWIM will use these objects to aggregate, integrate, and intelligently disseminate all relevant knowledge to support NAS information exchange. SWIM will serve as an integrating substrate upon which legacy systems will be linked together to support transparent information exchange across a wide spectrum of FAA activities and functional domains. Therefore, the presentations of data are decoupled from the application methods that act upon them. The options are either to use plain text files for data representation or use some more flexible, more structured way to represent SWIM data.

The desire to create, to manage, and to present large amounts of complex data has led to a need for a universal data format. It is this topic that addressed by eXtensible Markup Language, XML. Since, data may be stored in different formats and structures, XML can provide the mechanism that standardizes the way data from various sources is extracted and used.

XML is for structuring data. Structured data examples include data arranged in spreadsheets, address books, financial transactions, and technical drawings. XML avoids common pitfalls in language design: it is extensible, platform-independent, and it supports internationalization and localization.

XML can be considered a universal data format because of following reasons:

· Ease of Use: Its text-based nature makes it easy to create tools;

· Open, License-Free, and Cross-Platform Standard: Anyone can create, develop and use tools for XML

· Supports Complex Data Storage: Data is transmitted in computers in many ways; originally it was stored in flat-files with fixed-length or delimited formats but has migrated to databases that can support complex binary formats. XML is a structured data format, supporting storage of complex data including text, binary or object-oriented.

· Compatible with a Range of Applications and Platforms: Because XML tags represent the logical structure of the data (hierarchical), they can be interpreted and used in multiple ways by different applications. For example, one application may gather information, another combines data collected from multiple sources and yet another performs reporting of the same data.

XML can be used for different purposes within SWIM including:

· Information Sharing: XML may allow different information services specific to surveillance, weather, etc to define standard/common data formats in XML, build tools that read data, write data and transform data between XML and other formats. The standard formats can be used by different applications for data exchange

· Content Delivery: XML may support different users and information delivery mechanisms in delivering ‘applications’ to users through a chosen medium. For example, surveillance users and weather users may both need to access the same on-line ‘product catalogue’. Although the information is the same, the visual emphasis can differ. A surveillance user may want to see weather precipitation, which may be a subset of the weather characteristics that a weather user may want to see. All of this weather information can be stored in a single XML document and displayed differently by the different applications (e.g. surveillance applications and weather applications)

4.10.2.2 Application Development

The Application Layer augments distribution middleware by defining higher-level domain-independent services that focus on programming business logic. It is important for application development to provide flexible, portable, language and platform independent services. Java and C++ are the languages of choice because they are both mature, platform independent languages, and there is a rich set of APIs
 that can support and simplify the application services. Examples of application layer technology products are Sun’s J2EE and Microsoft’s .NET.

4.10.2.3 Distributed Computing (Middleware)

Of the technologies to be used to establish and operate SWIM, middleware can be considered a key component. Middleware is the entity that supports the transfer of data between sources and destinations in heterogeneous environments. It supports data translation and transport activities and acts as the core infrastructure on which enterprise developers build their applications. The functions of middleware include:

· Switching data between dissimilar platforms

· Switching data between incompatible databases

· Providing uniform interfaces to connect dissimilar operating systems

· Providing real-time handling of data exchange in mission critical operations

· Providing guaranteed data delivery

Some middleware products and protocols address a range of functions while others address individual pieces. These functions include:

· Application Integration

· Transport Monitor

· Application Management

· Information Push

· Message Broker

· Object Request Broker

· Messaging

· Reliable Multicast

There are three basic types of middleware: message-based middleware, remote procedure call middleware, and object request broker middleware. A description of each category of middleware is provided in Table 4‑29
.

Table 4‑29: Overview of Middleware Categories

	Type of Middleware
	Description

	Message-based middleware
	· Initially created to enable developers to move data messages between applications on different platforms and operating systems

· Exchanges data reliably and securely between applications on different platforms using message queues or message bus

· Message delivery is guaranteed since the middleware controls messages and their progress throughout an exchange

	Remote procedure call middleware
	· Supports request/reply interaction between applications on different platforms and operating systems

· Supports connection-oriented communications services that utilize Interface Definition Language (IDL) to describe the argument lists for outgoing and incoming parameters

	Object request broker middleware
	· This category is similar to message-based middleware in that data messages between applications on different operating systems and platforms are supported; however, object request broker middleware goes beyond message oriented middleware by connecting applications not just on a data element level, but at a business logic level

· This type of implementation works best for entirely new architectures

· Standards such as CORBA, DCOM, and Java Beans are example implementations of this type of middleware architecture

Middleware advantages, disadvantages and product support examples are shown in Table 4‑30.

Table 4‑30: Middleware Pros/Cons and Product Examples

	
	Advantages
	Disadvantages
	Product Examples

	Message-Oriented

(Message Queuing)
	Message queuing provides safe storage of information and is most appropriate where applications cannot be connected directly
	Message queuing tools require considerable configuration to set up correctly and performance can be poor. If access to a queue is lost for any reason, the entire system can be affected
	IBM MQseries

Sun/ToolTalk

	Remote Procedure Call
	Application components communicate with each other synchronously, it is easy to understand. Works well for smaller, simple applications where communication is primarily point-to-point (rather than one system to many)
	RPCs do not scale well to large, mission-critical applications as they leave many crucial details up to the programmer such as handling network or system failure, handling multiple connections, synchronization between processes, portability, buffering and flow control
	SUN ONC

Linux RPCs

OSF DCE

	Object Request Broker
	Language independent, object-oriented approach, platform independent.

Applications are portable in this environment
	Complex to implement, extension (such as real-time CORBA) is needed in order to satisfy the real-time performance constraints
	OMG/CORBA

Sun/ Java/RMI

Microsoft DCOM/COM

Sun Enterprise Java Bean

To best select suitable implementation options, all the SWIM implementation objectives (platform independence, language independence, protocol independence, data portability, application portability, scalability, interoperability and flexibility) need to be considered. Also, selection of an implementation option can only be started after all the other design issues are resolved for SWIM.

4.10.2.4 Resources (Databases)

Data marts are used in SWIM as temporary data storage for fast retrieval as discussed in Section 4.7.
Data marts can be implemented by various technologies: relational databases, object-oriented databases, and object-relational databases. These are described in the following paragraphs.

A relational database management system (RDBMS) is a collection of data items organized as a set of formally-described tables from which data can be accessed or reassembled in many different ways without having to reorganize the database tables.
 Relational databases store data in tables that are two dimensional with rows and columns. RDBMSs use Structured Query Language (SQL, currently SQL2). SQL includes statements for data definition, modification, querying, and constraint specification. The types of queries vary from simple single-table queries to complicated multi-table queries involving joins, nesting, set union/differences, and others.

An object oriented database, also called a Object Database Management System (ODBMS), is a database management system that supports the modeling and creation of data as objects.
 Objects basically consist of the following:

· Attributes - Attributes are data that defines the characteristics of an object. This data may be simple such as integers, strings, and real numbers or it may be a reference to a complex object.

· Methods - Methods define the behavior of an object and are what was formally called procedures or functions.

The Object Data Management Group (ODMG) has proposed a standard known as ODMG-93 or ODMG 1.0 standard, now revised into ODMG 2.0. This standard consists of the object model, the object defining language (ODL), the object query language (OQL), and the bindings to OO programming languages. The primary interface in an OODBMS for creating and modifying objects is directly via the object language (C++, Java, etc.) using the native language syntax.

An Object-Relational Database Management System (ORDBMS) is designed to achieve the benefits of both the relational and the object models such as scalability and support for rich data types. ORDBMSs employ a data model that attempts to incorporate OO features into RDBMSs. All database information is stored in tables, but some of the tabular entries may have richer data structure. An ORDBMS supports an extended form of SQL called SQL3 that is still in the development stages.

The comparisons of these RDBMS, OODBMS and ORDBMS are in the Table 4‑31
.

Table 4‑31: A Comparison of Database Management Systems

	Criteria
	RDBMS
	ODBMS
	ORDBMS

	Defining Standard
	SQL2
	ODMG-2.0
	SQL3 (in progress)

	Support Complex relationships
	Does not support abstract data types
	Support a wide variety of data types and data with complex inter-relationships
	Support abstract data types and complex relationships

	Performance
	Very good
	Relative slow performance
	Expect to perform well

	Product maturity
	Very mature
	Relatively mature
	Less mature

	Advantages
	Uses SQL, relatively simple query optimization hence good performance
	Handles all types of complex applications, good code reusability
	Ability to query complex applications and to handle large and complex applications

	Disadvantages
	Inability to handle complex applications
	Low performance due to complex query optimization, inability to support large-scale systems
	Low performance in web applications

4.10.3 Summary of Implementation Options

Table 4‑32 summarizes the implementation options.

Table 4‑32: Summary of Implementation Options

	Option Number
	Technology/Implementation Options
	Factors That Affect the Decision
	How to Resolve
	Impact on Overall Effectiveness of the Architecture

	1
	Data Presentation
	SWIM data concept
	Design analysis
	medium

	2
	Application Development
	Implementation objectives,
Technology/COTS support
	Design analysis
	medium

	3
	Distributed Computing
	Implementation objectives,
Technology/COTS support
	Design analysis
	High

	4
	Database management
	SWIM data concept, implementation objectives

Technology/COTS support
	Design analysis
	Medium

5. Physical Architecture Definitions and Comparisons

5.1 Physical Architecture Solution Space

Section 4 presents an analysis of SWIM physical architecture design issues and tradeoffs. Interrelationships between these design issues are also discussed and how they each affect the physical architecture in different ways. These design tradeoffs support the development of architecture alternatives, refinement of the physical architecture and the identification of implementation options. This section presents some alternative architecture solutions based on specific different design decisions.

As illustrated earlier, physical architecture alternatives should be developed based a set of selection decisions on the following key design tradeoffs:

· Data concept and representation

· Data granularity

· SWIM process options

· Broker Topology.

The interrelationships between these design tradeoffs and others are shown in Figure 5‑1.

[image: image47.wmf]Data Concept and

Data Representation

Issues

Interface Integration

Options

Broker Topology

Options

Data Granularity

Options

Implementation

Options

NM Options

Security Mechanisms

SWIM Process

Options

Data Storage Issues

1

2

3

4

High

Decision Making Priority Steps

Low

Decisions support development of architecture alternatives

Implicit decisions to be made

Data Concept and

Data Representation

Issues

Interface Integration

Options

Broker Topology

Options

Data Granularity

Options

Implementation

Options

NM Options

Security Mechanisms

SWIM Process

Options

Data Storage Issues

1

2

3

4

High

Decision Making Priority Steps

Low

Decisions support development of architecture alternatives

Implicit decisions to be made

Figure 5‑1: Design Options That Affect Architecture Alternatives

Candidate SWIM architectures have been derived from these sets of key tradeoffs. Table 5‑1 lists three candidate SWIM Architecture alternatives and corresponding decisions.
Table 5‑1: Three Candidate Architecture Alternatives Derived from Key Design Tradeoffs

	ID
	Data Representation
	Data Granularity
	SWIM Process
	Broker Topology
	Data Storage Method
	NM
	
	

	
	
	
	
	Broker Locations
	Broker Connection
	
	
	Member Interface
	Security

	A
	Structural Metadata wrapped in Information Object, corresponding subscription language defined
	Fine data granularity (Subject-based and or content-based subscription capability)
	With Broker
	Local
	Hybrid
	Data Mart & Data Warehouse
	SNMP
	User specified
	Common network and platform security

	B
	Data classified to “channel” criteria, simple subscription rules for subscribers
	Coarse data granularity (Channel-based/

subject-based subscription capability)
	Without Broker
	Cross-Regional
	Peer-to-Peer

	Data Warehouse (as needed)
	SNMP
	User specified
	Common network and platform security

	C
	Structural Metadata wrapped in Information Object, corresponding subscription language defined
	Fine data granularity (Subject-based and or content-based subscription capability)
	VC Broker
	Regional
	Hierarchy
	Data Mart and Data warehouse
	SNMP
	User specified
	Common network and platform security

5.1.1 Candidate “A” Architecture Description

Candidate “A” SWIM architecture is derived based on the following design tradeoffs:

· Information objects are used as the least publishable unit. Data model structural information is described in metadata associated with the information objects. The corresponding subscription language is defined for subscribers to subscribe/query their needed information.

· Data granularity is at “fine” level, subscriptions can be subject-based or content-based to some extent.

· “With broker” is the selection for SWIM process, that is, every information object gets published to the broker and the broker matches subscriptions to these information objects and disseminates the information objects to interested subscribers.

· Brokers are distributed at a “local” level and a hybrid of peer-to-peer (acyclic peer-to-peer or general peer-to-peer) and hierarchical connections are used.

· Data marts as well as data warehouses are used for SWIM data storage.

· Network work management is SNMP-based, Network Management architecture and interfaces are all built on SNMP protocol.

· Member interface integration can be user specified; they can either be on a standalone server or proxy software.

· Security will apply general FAA security policies, and security mechanisms will be implemented both on network layer as well as on SWIM platform layer.

Figure 5‑2 shows the architecture block diagram of a broker domain. In this diagram, SWIM publishers and subscribers access SWIM broker through SWIM member interfaces. Brokers communicate with other brokers, data marts and data warehouses with the help of a distributed computing mechanism. Network management and security are built into the broker domains.

[image: image48.wmf]B

SWIM Process: With Broker

Data

Mart

Distributed Computing

Network Management

Security

Broker

Distributed communications and network infrastructure (in blue)

Member interface

Data

Warehouse

B

SWIM Process: With Broker

Data

Mart

Distributed Computing

Network Management

Security

Broker

Distributed communications and network infrastructure (in blue)

Member interface

Member interface

Data

Warehouse

Figure 5‑2: Candidate “A” Broker Domain Block Diagram

As the decision on broker topology is to have brokers distributed local domain (TRACON/AFSS), therefore there are many brokers in one ARTCC region, as shown in Figure 5‑3. Each square is a TRACON/AFSS domain, and each circle represents an ARTCC region. The connections between these brokers are a hybrid of peer-to-peer and hierarchical distribution. The blue lines are the first-level broker hierarchy connection and the red lines are the second-level hierarchy connections. At each level of the hierarchy, there is a “master” broker that is responsible for the next level of communication.

[image: image49.wmf]With Broker / Local Broker Location / Hybrid Topology

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

ARTCC Region

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

ARTCC Region

ARTCC Region

ARTCC Region

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

With Broker / Local Broker Location / Hybrid Topology

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

ARTCC Region

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

ARTCC Region

ARTCC Region

ARTCC Region

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

Figure 5‑3: Candidate “A” Broker Distribution

5.1.2 Candidate “B” Architecture Description

Candidate “B” SWIM architecture is derived based on the following design tradeoffs:

· Data are classified based on “channel” definition criteria. Information objects contain information of channel types. Subscription language defines simple rules for subscribers to subscribe to one or more particular channel or channels.

· Data granularity is at “coarse” level; subscriptions can be channel-based or subject-based.

· “Without broker” is the selection for SWIM process; publishers publish to different pre-defined “data channels;” subscribers get their data from desired data channels.

· Brokers are distributed at a “cross-regional” level and peer-to-peer connections are used.

· Data warehouses are used for SWIM data archiving.

· Network work management is SNMP-based; Network management architecture and interfaces are all built on SNMP protocol.

· Member interface integration can be user specified; they can either be on a standalone server or proxy software.

· Security will apply general FAA security policies, and security mechanisms will be implemented both on network layer as well as on SWIM platform layer.

[image: image50.wmf]Data

Warehouse

Distributed Computing

Network Management

Security

SWIM Process: Without Broker

Data bus

Data bus

Data Channels

Member interface

Member interface

NB

Distributed communications and network infrastructure (in blue)

Figure 5‑4: Candidate “B” Broker Domain Block Diagram

As the decision on broker topology is to have brokers distributed at cross-regional (ARTCC region) level, therefore there are one or few brokers in one ARTCC region and the connections between these brokers are peer-to-peer shown as the red lines in Figure 5‑5.

[image: image51.wmf]Without Broker / Cross Regional Broker Location / Peer to peer T

opology

NB

NB

NB

NB

ARTCC Region

ARTCC Region

ARTCC Region

ARTCC Region

Without Broker / Cross Regional Broker Location / Peer to peer T

opology

NB

NB

NB

NB

ARTCC Region

ARTCC Region

ARTCC Region

ARTCC Region

Figure 5‑5: Candidate “B” Broker Distribution

5.1.3 Candidate “C” Architecture Description

Candidate “C” SWIM architecture is derived based on the following design tradeoffs:

· Information objects are used as the least publishable unit. Data model structural information is described in metadata associated with the information objects. The corresponding subscription language is defined for subscribers to subscribe/query their needed information.

· Data granularity is at “fine” level; subscriptions can be subject-based or content-based to some extent.

· “VC Broker” is the selection for SWIM process; non-stream data and stream data are processed differently. Non-stream information objects get published to the VC broker and the broker matches subscriptions to these information objects and disseminate the information objects to interested subscribers. Brokers also set up virtual circuits for publishing stream data to the interested subscribers.

· Brokers are distributed at a “regional” level and hierarchical connections are used.

· Data marts and data warehouses are used for SWIM data storage.

· Network work management is SNMP-based; Network Management architecture and interfaces are all built on SNMP protocol.

· Member interface integration can be user specified; they can either be on a standalone server or proxy software.

· Security will apply general FAA security policies, and security mechanisms will be implemented both on network layer as well as on SWIM platform layer.

[image: image52.wmf]VCB

SWIM Process: VC Broker Case

DM

Distributed Computing

Network Management

Security

VC Broker

Member interface

Distributed communications and network infrastructure (in blue)

DM

Distributed Computing

Network Management

Security

VC Broker

Member interface

Member interface

Distributed communications and network infrastructure (in blue)

Figure 5‑6: Candidate “C” Broker Domain Block Diagram

As the broker topology is to have brokers distributed on a regional domain basis, there are a few brokers in one region, as shown in Figure 5‑3. Each square is a TRACON/AFSS domain, and each circle represents an ARTCC region. The connections between these brokers are hierarchical. The blue lines are the first-level broker hierarchy connections and the red lines are the second-level hierarchy connections. At each level of the hierarchy, there is a “master” broker that is responsible for next level of communications.

[image: image53.wmf]VC Broker / Regional Broker Location / Hierarchy Topology

VCB

ARTCC Region

ARTCC Region

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

VCB

VCB

VCB

VCB

VCB

VCB

VCB

VCB

VCB

VCB

VCB

VCB

VCB

VCB

ARTCC Region

ARTCC Region

VCB

TRACON/AFSS

VC Broker / Regional Broker Location / Hierarchy Topology

VCB

ARTCC Region

ARTCC Region

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

TRACON/AFSS

VCB

VCB

VCB

VCB

VCB

VCB

VCB

VCB

VCB

VCB

VCB

VCB

VCB

VCB

ARTCC Region

ARTCC Region

VCB

TRACON/AFSS

Figure 5‑7: Candidate “C” Broker Distribution

5.2 Physical Architecture Comparisons

To contrast the alternative physical architecture candidates, the following primary comparison criteria have been identified. These include:

· Requirements compliance – how well does the architecture satisfy the NAS-level and function-level requirements of SWIM?

· Complexity – the implementation and management complexity of the architecture

· Availability of commercial solutions – how much of the architecture implementation can be supported by available COTS products and how much new development is needed?

· Risk – what are the risks associated with the architecture implementation, e.g., security-related risk, performance-related risk, and implementation-related risk?

· Schedule – Is the architecture too complex to be built to meet FAA schedules?

· Cost – What are the costs associated with each architecture alternative? What is the cost/benefit ratio for each architecture alternative?

The comparison of these architecture alternatives has been left for future work, and may involve development and testing of engineering demonstration models.

6. Summary

Based on SWIM functionality identified in the NAS CONOPs, the NAS Target System Description and SWIM/NWIS CONUSE, a physical architecture for SWIM that supports effective collaboration among NAS participants by means of automated establishment and exchange of NAS information has been developed. This effort builds upon the functional analysis and requirements development efforts conducted in earlier phases of this study. Additionally, previous SWIM architecture investigations including CNS-ATM Task 15 architecture concept tradeoffs were utilized.

Adopting a formalized approach to physical architecture development based on the NAS System Engineering Manual, several tasks were performed. They included:

· Identification of technologies that would be required to implement the SWIM functions (from SWIM functional analysis)

· Identification of candidate hardware/software, data and people/facility components to accommodate SWIM functionality

· Identification of SWIM-specific components

· Validation of architecture compliance with both defined SWIM functionality and requirements

· Investigation of design alternatives specific to the SWIM architecture

· Development of candidate physical architecture solutions

The technologies identified as potentially relevant to the implementation of SWIM include both information technologies as well as communication technologies. They include middleware; distributed network management; data representation techniques; subscription languages; wrapper technologies; several security technologies. Components (including hardware/software, data, and people/facilities) that accommodate these technologies and the identified functionality required for SWIM were then identified.

Having captured a range of components that could be used to implement SWIM, consideration was given to information sharing constraints. Specifically, SWIM has been defined to support information users that do not require a priori knowledge of the information sources; information can be exchanged over dynamically established connections; and information sharing services apply to all NAS data domains. These constraints drive architecture characteristics. In particular, a service-type or broker architecture (e.g. publish/subscribe) is necessary (as compared to client/server architectures, for example, where software applications interact via application-to-application specific interfaces). Additionally, to support the services identified for SWIM, a distributed processing capability for service brokering will likely be required. As identified in previous studies, including CNS-ATM Task 15, these characteristics can be accommodated by a publish/subscribe strategy for implementing the broker architecture.

To accommodate the functionality and constraints associated with SWIM, physical architecture components associated with both Information Management and Network Management have been identified. Architecture and schematic block diagrams illustrating the components and their interconnection for SWIM Information Management functionality are provided in Figure 6‑1.

[image: image54.wmf]Storage

Member

Interface

Registration

Transaction

Translation

Security Policy

Implementation

Data Conversion

Member

Interface

Registration

Transaction

Translation

Security Policy

Implementation

Data Conversion

Member

Interface

Registration

Transaction

Translation

Security Policy

Implementation

Data Conversion

Member

Interface

Registration

Transaction

Translation

Security Policy

Implementation

Data Conversion

Member

Interface

Registration

Transaction

Translation

Security Policy

Implementation

Data Conversion

Broker

Registration

Maintenance

Transaction

Processing

User/Data

Verification

Broker Naming

Service

Event Handling

Data

Warehouse

Data Mart

GUI

SWIM

SWIM

Members

Member

Discovery

Data Model

MDR

MDR

IOR

IOR

SWIM Information Management

SWIM Information Management

Member Interface

Interface S/W

Interface H/W (optional)

Registration

Transaction Translation

Security Policy

Implementation

Data Conversion

Member Discovery

Member Interface

Interface S/W

Interface H/W (optional)

Registration

Transaction Translation

Security Policy

Implementation

Data Conversion

Member Discovery

Data Storage

Data Mart

Data Warehouse

Data Storage

Broker

Broker S/W

Broker Server

Registration Maintenance

Transaction Processing

User/Data Verification

Broker Naming Service

Event Handling

Broker

Broker S/W

Broker Server

Registration Maintenance

Transaction Processing

User/Data Verification

Broker Naming Service

Event Handling

Data Mart

Data Warehouse

Data Storage

Data Model

Data Mart

Data Warehouse

Common data model

MDR

Data Warehouse

IOR

SWIM Information Management

SWIM Information Management

Member Interface

Interface S/W

Interface H/W (optional)

Registration

Transaction Translation

Security Policy

Implementation

Data Conversion

Member Discovery

Member Interface

Interface S/W

Interface H/W (optional)

Registration

Transaction Translation

Security Policy

Implementation

Data Conversion

Member Discovery

Member Interface

Interface S/W

Interface H/W (optional)

Registration

Transaction Translation

Security Policy

Implementation

Data Conversion

Member Discovery

Member Interface

Interface S/W

Interface H/W (optional)

Registration

Transaction Translation

Security Policy

Implementation

Data Conversion

Member Discovery

Data Storage

Data Mart

Data Warehouse

Data Storage

Broker

Broker S/W

Broker Server

Registration Maintenance

Transaction Processing

User/Data Verification

Broker Naming Service

Event Handling

Broker

Broker S/W

Broker Server

Registration Maintenance

Transaction Processing

User/Data Verification

Broker Naming Service

Event Handling

Broker

Broker S/W

Broker Server

Registration Maintenance

Transaction Processing

User/Data Verification

Broker Naming Service

Event Handling

Broker

Broker S/W

Broker Server

Registration Maintenance

Transaction Processing

User/Data Verification

Broker Naming Service

Event Handling

Data Mart

Data Warehouse

Data Storage

Data Model

Data Mart

Data Warehouse

Common data model

MDR

Data Warehouse

IOR

Data Warehouse

IOR

Architecture Block Diagram

Schematic Block Diagram

Figure 6‑1: Schematic Diagram for SWIM Information Components

Architecture and schematic block diagrams illustrating the components and their interconnection for SWIM Network Management components are provided in Figure 6‑2.

[image: image55.wmf]Architecture Block Diagram

Schematic Block Diagram

FTI

SWIM Members

SWIM Members

Mgmt Agents

SWIM Network

Managers

Managed Resources

Human

-

Machine Interface

Performance Mgmt

–

Identify

and diagnose system

degradations and bottlenecks

Accounting Mgmt

–

Maintain

usage logs, track usage trends,

and apply resource usage

policies

Security Mgmt

–

Generate

and distribute encryption and

authentication configurations

per set policies

Configuration Mgmt

–

Monitor and modify system

and component configurations

for optimal performance

Fault Mgmt

–

Identify,

correlate and

diagnose alarms

and failures

COTS Management Platform

Invoke NM commands: get, set, trap

Distribution

Agent

Coordinate NM

distribution and

failover

Simulation

Tool

Assess impacts of

configuration

modifications

Network Parameter Acquisition

Support

Processes

Network Mgmt

Interface at each

managed resource

SWIM Network Management

Network Manager Interface

Network Manager

Security

Interface S/W

Interface H/W (optional)

Manager S/W

Manager Server

Fault Management

Configuration Management

Account Management

Performance Management

Security Management

SWIM Network Management

Network Manager Interface

Network Manager

Security

Interface S/W

Interface H/W (optional)

Manager S/W

Manager Server

Fault Management

Configuration Management

Account Management

Performance Management

Security Management

Figure 6‑2: Schematic Diagram for SWIM Network Components

The components and associated diagrams identified for SWIM above constitute a high-level physical architecture for SWIM. SWIM functionality (as captured in the functional analysis) as well as NAS-level SWIM requirements have been allocated to components of the SWIM physical architecture. This verifies that all SWIM functionality and requirements have been addressed by some element of the physical architecture.

To refine the physical architecture for SWIM as well as decompose the architecture to the next lower level, design issues specific to architecture components and interfaces were identified. Figure 6‑3 provides an overview of these design topics.

[image: image56.wmf]Broker

Registration

Maintenance

Transaction

Processing

User/Data

Verification

Broker

Naming

Service

Data

Warehouse

Data Mart

Member

Interface

Registration

Transaction

Translation

Security

Policy

Implementati

on

Data

Conversion

Member

Interface

Registration

Transaction

Translation

Security

Policy

Implementati

on

Data

Conversion

Member

Interface

Registration

Transaction

Translation

Security Policy

Implementatio

n

Data

Conversion

GUI

SWIM

Broker

Registration

Maintenance

Transaction

Processing

User/Data

Verification

Broker Naming

Service

Event Handling

Data Representation:

–

Information Object

–

Common Data Model

–

Metadata and XML

Data Storage:

–

Data Marts /

RDBMS

–

Data Warehouse /

OODBMS

Topology

Options

NM Interface

Options

Data

Granularity

Options

Information Management (IM)

Network Management (NM)

Interface

Integration

Options

Security Mechanism

Options:

–

SCAP

–

PP

–

ISS

Network

Management

Interface

Network

Management

Interface

Network

Management

Interface

Network

Manager

Fault Mgmt

Config

Mgmt

Security Mgmt

Acct Mgmt

Perform Mgmt

Network

Manager

Fault Mgmt

Config

Mgmt

Security Mgmt

Acct Mgmt

Perform Mgmt

NM Options:

–

SNMP

–

GIOP (CORBA)

SWIM Process

Options

NM Architecture

Options

SWIM

Members

Broker

Registration

Maintenance

Transaction

Processing

User/Data

Verification

Broker

Naming

Service

Broker

Registration

Maintenance

Transaction

Processing

User/Data

Verification

Broker

Naming

Service

Data

Warehouse

Data

Warehouse

Data Mart

Data Mart

Member

Interface

Registration

Transaction

Translation

Security

Policy

Implementati

on

Data

Conversion

Member

Interface

Registration

Transaction

Translation

Security

Policy

Implementati

on

Data

Conversion

Member

Interface

Registration

Transaction

Translation

Security

Policy

Implementati

on

Data

Conversion

Member

Interface

Registration

Transaction

Translation

Security

Policy

Implementati

on

Data

Conversion

Member

Interface

Registration

Transaction

Translation

Security Policy

Implementatio

n

Data

Conversion

GUI

SWIM

Broker

Registration

Maintenance

Transaction

Processing

User/Data

Verification

Broker Naming

Service

Event Handling

Data Representation:

–

Information Object

–

Common Data Model

–

Metadata and XML

Data Storage:

–

Data Marts /

RDBMS

–

Data Warehouse /

OODBMS

Topology

Options

Topology

Options

NM Interface

Options

NM Interface

Options

Data

Granularity

Options

Data

Granularity

Options

Information Management (IM)

Network Management (NM)

Interface

Integration

Options

Interface

Integration

Options

Security Mechanism

Options:

–

SCAP

–

PP

–

ISS

Security Mechanism

Options:

–

SCAP

–

PP

–

ISS

Network

Management

Interface

Network

Management

Interface

Network

Management

Interface

Network

Manager

Fault Mgmt

Config

Mgmt

Security Mgmt

Acct Mgmt

Perform Mgmt

Network

Manager

Fault Mgmt

Config

Mgmt

Security Mgmt

Acct Mgmt

Perform Mgmt

Network

Manager

Fault Mgmt

Config

Mgmt

Security Mgmt

Acct Mgmt

Perform Mgmt

Network

Manager

Fault Mgmt

Config

Mgmt

Security Mgmt

Acct Mgmt

Perform Mgmt

NM Options:

–

SNMP

–

GIOP (CORBA)

SWIM Process

Options

SWIM Process

Options

NM Architecture

Options

NM Architecture

Options

SWIM

Members

Figure 6‑3: SWIM Physical Architecture Design Issues

An initial investigation of these design issues has been performed. The objectives of the analyses were to clearly identify both the problem and solution space with regard to each issue as well as identify candidate solutions to be used to generate alternative SWIM physical architectures (defined to a level below that which is shown above).

It was determined that these design issues are not isolated issues that can be investigated independently; rather there are significant relationships among these topics. The relationships among these design topics as well as a framework that captures the relative order in which decisions related to the design topics need to be addressed is captured in Figure 6‑4.

[image: image57.wmf]Data Concept and

Data Representation

Issues

Interface Integration

Options

Broker Topology

Options

Data Granularity

Options

Implementation

Options

NM Options

Security Mechanisms

SWIM Process

Options

Data Storage Issues

1

2

3

4

High

Decision Making Priority Steps

Low

Data Concept and

Data Representation

Issues

Interface Integration

Options

Broker Topology

Options

Data Granularity

Options

Implementation

Options

NM Options

Security Mechanisms

SWIM Process

Options

Data Storage Issues

1

2

3

4

High

Decision Making Priority Steps

Low

Figure 6‑4: SWIM Design Topic Inter-relationships and Decision Making Orders

The figure above indicates that the first steps in refining the SWIM physical architecture design require decisions to be made regarding data concepts and data representation, data granularity, and SWIM broker processing options. The figure also indicates that the decisions regarding how SWIM data is represented must be addressed in conjunction with data granularity decisions because the two are interrelated.

Once these initial decisions are made, they become inputs to other design aspects for SWIM. For example, the data granularity and broker processing options affect the identification of a meaningful solution set for broker topology decisions. There is a similar relationship between data concept/representation decisions and interface integration decisions and broker processing options and data storage decisions. As shown in Figure 6‑4, all decisions require consideration when analyzing and selecting implementation technologies that characterize implementation options.

Based on the investigation of these design topics for SWIM, three detailed candidate physical architectures for SWIM have been identified. They include:

· Candidate A: an architecture where SWIM services include information processing using a broker; where brokers are distributed throughout the NAS to ARTCCs and large facilities, to TRACONs/AFSSs and to ATCTs; and with brokers connected via a hybrid topology (i.e. hierarchy within ARTCC regions/peer-to-peer between ARTCC regions)

· Candidate B: an architecture where SWIM services include information exchange via virtual circuits (but the exchange setup is via the broker); where a minimum set of brokers for service setup are located at NAS ARTCCs and large facilities (e.g. ATCSCC); and with brokers using peer-to-peer connections

· Candidate C: an architecture where SWIM services can include information processing via a broker or via a virtual circuit between an information publisher and information requester; where brokers are distributed in the NAS to ARTCCs and large facilities as well as to TRACONs/AFSSs; and with brokers connected via a hierarchy topology

An illustration of the candidate architectures is provided in Figure 6‑5.

[image: image58.wmf]Data

Mart

Distributed Computing

Network Management

Security

Broker

Distributed communications and network infrastructure (in blue)

Member interface

Data

Warehouse

Data

Mart

Distributed Computing

Network Management

Security

Broker

Distributed communications and network infrastructure (in blue)

Member interface

Member interface

Data

Warehouse

Data

Warehouse

Distributed Computing

Network Management

Security

Data bus

Data Channels

Member interface

Distributed communications and network infrastructure (in blue)

Data

Warehouse

Distributed Computing

Network Management

Security

Data bus

Data bus

Data Channels

Member interface

Member interface

Distributed communications and network infrastructure (in blue)

DM

Distributed Computing

Network Management

Security

VC Broker

Member interface

Distributed communications and network infrastructure (in blue)

DM

Distributed Computing

Network Management

Security

VC Broker

Member interface

Member interface

Distributed communications and network infrastructure (in blue)

Figure 6‑5: Candidate Physical Architectures for SWIM

The processing of evaluating and comparing these candidates as well as the initial work to specify requirements associated with design models of SWIM components necessitates continuation of the physical architecture development work effort. Specifically, required future task items include:

· Interaction with NAS IPTs to explore data model/representation requirements and constraints

· Investigation and definition of data models and query possibilities associated with specific SWIM services

· Further identification of SWIM performance requirements and constraints

· Evaluation and comparison of candidate physical architectures in terms of performance, cost, schedule, ease of transition, etc

· Development of initial security documentation associated with SWIM in support of SCAP development

· Development of Engineering Demonstration Models of one or more of the architecture candidates using COTS hardware and software (this will be discussed in the Task 17 Final Report after the results of Subtask 17E (Transition issues) have been incorporated).

Appendix A. Information Object Reference Material

This appendix contains reference material support the development of data concepts for SWIM. Specifically, the following topics are addressed:

· Information Object Lifecycle (Section A.1)

· Data Representation – XML Overview (Section A.2)

A.1 Lifecycle of SWIM Information Objects

Information objects, such as SWIM information objects, go through four distinct lifecycle stages: Creation; Validation & Verification; Publishing, Searching and Retrieving; and Archiving and Disposition. The relationship between these stages is illustrated in Figure A- 1.

[image: image59.wmf]Creation of

Information Object

Validation and

Verification

Publishing, Searching

Retrieving

Archiving and

Disposition

•

Inventory of data

•

Understand data

•

Identify what data means

•

Identify data set valid time

•

Identify the resources that create

the data sets

•

Identify what data sets represent

•

Identify how data sets are represented

•

Structure data

•

Define data security levels

•

Define searchable attributes

•

Define information object

•

Represent information objects

•

Choose metadata builder

•

Define metadata schema

•

Build metadata registry

•

Define and implement access methods

•

Define security check point

•

Validate information object

•

Publish information objects (SWIM

process)

•

Provide searching constraints or language

•

Define retrieval algorithms

•

Mapping published information objects

to subscribe and query requests

•

Store information objects to data marts

•

Store information objects payload to

data warehouse

•

Refresh information objects in data marts

•

Refresh information objects payload in

data warehouse

•

Maintain data integrity

•

Disposition outdated information objects or

their payloads

Information Object Lifecycle

Figure A- 1: Lifecycle of an Information Object

During the creation of the information object, strategies and techniques for creating information objects are developed. This process may include:

12. Inventory data: determine the exact data to be exchanged over SWIM

13. Understand data: identify characteristics to consider when creating metadata keeping in mind that thoughtful metadata definition can provide an opportunity to capture information loss during the process of automating data services

· Identify what data means

· Identify data set valid time

· Identify the resources that create the data sets

· Identify what the data sets represent

· Identify how data sets are represented

1. Identify structured metadata: For example, define data security levels as well as searchable attributes

2. Define information objects: Define the actual structure of the information objects

3. Represent information objects: Use a representation language such as XML to represent the information object

Some administrative and descriptive metadata may be included by the information object creators. Information objects are organized into the structure of the defined common data model and additional metadata for those objects may be created through registration, repository and indexing processes.

Information objects need to be validated and verified before they are published or distributed. Validation and verification is accommodated in various ways in SWIM. Metadata schemas need to be defined and stored in a metadata registry. Identifying those metadata schema or schemas that should be applied in order to best meet the needs of the information creator, repository and users is an important task (this is a means of verifying the proper information is received by the proper user). In addition to metadata registries, an information objects repository also needs to be defined and built to store the defined information objects. Information access methods will be defined for SWIM members to define the manual or automatic means to request exchange of information over SWIM. These access methods include security access controls to ensure each member accesses only information for which they have been authorized.

Information objects that are published or distributed are subject to search and retrieval by SWIM members. SWIM must identify the search language, searchable attributes and constraints to be used by SWIM members to compose their own search predicates to subscribe or query specific information objects. Retrieval algorithms need to be defined in order for SWIM to map published information objects to subscribe or query requests. SWIM will also track retrieval algorithms, user transactions, and system effectiveness in storage and retrieval.
Finally, information objects may be archived in data marts for fast retrieval; and certain information objects payloads may be archived in data warehouse for long term storage. Processes associated with storage and retrieval such as refreshing and integrity checking are needed to ensure the continued availability of valid information. Information objects that are outdated or no longer necessary may be discarded. Metadata can be used to document both preservation and disposition activities.
A.2 Information Object Representation – XML Overview

To support flexible and efficient data exchange, there is a desire to have a universal communications medium (the Internet), a universal user interface (the browser), and a universal programming language (Java). The desire to create, manage, and present large amounts of complex data has led to a need for a universal data format. It is this topic that addressed by eXtensible Markup Language, XML. Since data may be stored in different formats and structures, XML can provide the mechanism that standardizes the way data from various source is extracted and used.

XML is used for structuring data. Structured data examples include data arranged in spreadsheets, address books, financial transactions, and technical drawings. XML is not a programming language, but rather provides a set of rules (or conventions) for designing text formats to create structured data. It makes it easy for a computer to generate data, read data, and ensure that the data structure is unambiguous. XML avoids common pitfalls in language design: it is extensible, platform-independent, and it supports internationalization and localization. Finally, XML is fully Unicode-compliant.

XML can be considered a universal data format because of following reasons:

14. Ease of Use: Its text-based nature makes it easy to create tools;

15. Open, License-Free, and Cross-Platform Standard: Anyone can create, develop and use tools for XML

16. Supports Complex Data Storage: Data is transmitted in computers in many ways; originally it was stored in flat-files with fixed-length or delimited formats but has migrated to databases that can support complex binary formats. XML is a structured data format, supporting storage of complex data including text, binary or object-oriented.

17. Compatible with a Range of Applications and Platforms: Because XML tags represent the logical structure of the data (hierarchical), they can be interpreted and used in multiple ways by different applications. For example, one application may gather information, another combines data collected from multiple sources and yet another performs reporting of the same data. These applications can be developed on different platforms such as .NET or JAVA. Additionally, the architecture of these applications can be based on the client-server model or web application models.

XML encompasses a family of markup languages where any number of markup languages can be defined in it. This means that almost any type of data can be easily defined in XML. This differs from the widely used Hyper-Text Markup Language (HTML) that consists of a pre-defined set of tags with pre-defined roles. This pre-definition of tags makes it a language that is easy to learn and is very accessible, but it also makes it hard to re-use the data. In contrast, as its name indicates, XML is extensible, which means that a set of tags can be defined in a custom manner. This definition of tags can then be shared with other parties (people or programs) to support common knowledge and understanding of the tags. For example, ebXML is an electronic business standard based on well-defined XML messages within the context of standard business processes. Similarly, for SWIM, a set of tags may be defined for specific information services, like surveillance, weather, etc., so that surveillance system users can use their own surveillance-specific applications to use or view data on their systems.

XML can be used for different purposes within SWIM including:

18. Information Sharing: XML may allow different information services specific to surveillance, weather, etc to define standard/common data formats in XML, build tools that read data, write data and transform data between XML and other formats. The standard formats can be used by different applications for data exchange

19. Content Delivery: XML may support different users and information delivery mechanisms in delivering ‘applications’ to users through a chosen medium. For example, surveillance users and weather users may both need to access the same on-line ‘product catalogue’. Although the information is the same, the visual emphasis can differ. A surveillance user may want to see weather precipitation, which may be a subset of the weather characteristics that a weather user may want to see. All of this weather information can be stored in a single XML document and displayed differently by the different applications (e.g. surveillance applications and weather applications)

There are a large variety of technologies related to XML that are important to the understanding and development of XML applications. They may also be relevant to the SWIM architecture development effort. XML 1.0 is the specification that defines "tags" and "attributes". Beyond XML 1.0, "the XML family" is a growing set of modules that offer useful services to accomplish important and frequently demanded tasks related to structured data. XLink describes a standard way to add hyperlinks to an XML file. XPointer is a syntax in development for pointing to parts of an XML document. It is like a URL, but instead of pointing to documents on the Web, it points to pieces of data inside an XML file. CSS, the style sheet language, is applicable to XML as well as to HTML. XSL is the advanced language for expressing style sheets. It is based on XSLT, a transformation language used for rearranging, adding and deleting tags and attributes. The DOM is a standard set of function calls for manipulating XML (and HTML) files from a programming language. XML Schemas help developers to precisely define the structures of their own XML-based formats. Other modules and tools are available or are under development.
 Keep an eye on W3C's technical reports page.

As the SWIM architecture is implemented and evolved, various combinations of legacy data formats may be initially accommodated by SWIM. The goal, however, would be to move towards a single, universal data format to provide the most flexible and efficient description of all NAS data. XML is a leading technology candidate for this universal format. XML is becoming widely used in enterprise networks and there are many related technologies that can be uses to support a range of data manipulations. Further work in the investigation of SWIM information objects may look towards XML and related technologies to provide a standardized solution to information exchange. This work will include the development and definition of specific XML tags for specific types of NAS information. Some initial work in this area is underway (e.g. NAS Information Markup Language (NIXL) development). These efforts will need to continue and be coordinated to achieve a set of NAS information formats that satisfy the range of SWIM information types and associated subscribers that use the information.

A.3 Geographical Index Reference

Aircraft trajectories, radar and navigation aid coverage data, air traffic sector boundaries, Special Use Airspace definitions, weather data and most of the other data in the NAS either specify a location or are meaningless without associated spatial information. As a consequence, most if not all SWIM information objects can make use of a Geographical Index Reference which could incorporate a standard reference to latitude, longitude and altitude. The SWIM (NWIS) CONUSE and other documents identify the need for SWIM to provide four-dimensional (three geospatial dimensions and time) references for information to be exchanged over SWIM. This has led to two NAS-level SWIM requirements (generated in Subtask 17B), specifically: “The NAS shall use common geographic reference attributes for information transported [over SWIM]” (Requirement 16) and “The NAS shall establish a common geographical and time reference for information to be exchanged [over SWIM]” (Requirement 30.)

Many legacy NAS data items are stored as flat files, which do not provide the semantic structure that allow modern capabilities such as searching based on geographical reference. NAS users and service providers may need to scan through bulky files to obtain needed data, and may even fail to find the data. Geographical referencing provides SWIM with a range of capability. It provides a new means for searching for information (replace outmoded processes reliable and efficient ones). Additionally and more significantly, using geographical referencing provides SWIM the ability to utilize a common airspace data model. Each information item in the SWIM databases can be consistently defined with common attributes and registered with a geographic reference point in accordance with a common reference model.

A common reference model defined for the NAS (and useful with geographic referenced information) may include a standard description of the volume to be found at the reference point as well as a time reference. With a new common airspace model in place, future flight planning information such as flow-constrained area, weather, and NOTAMs could be easily accessible to users and service providers without strenuous scanning of information. Additionally, to avoid flow restrictions and severe weather, SWIM could provide flight planners, system applications or intelligent agents the ability to search NAS repositories for information based on geographical reference.

The design issue for SWIM with regard to this topic is how to incorporate geographic indexing into the SWIM common data model.

Appendix B. Technology Reference

This appendix provides technology references to some of the technology studies carried out and definitions of the technology names mentioned in the report.

B.1 Distributed Computing Design Patterns

The discussions in this section are quoted from “Real-Time Design Patterns”, Robust scalable architecture for real-time systems, Bruce Powel Douglass. Addison-Wesley, 2002.

One of the key issues in deriving SWIM architecture is to decide on its distributed computing mechanism. We tried to find out a set of generalized solutions to this topic, and the solution must also be general enough to be applied in a wide set of application domains. The following distribution patterns were considered when deciding a physical architecture for SWIM. These patterns are:

· Shared memory pattern

· Remote method call pattern

· Observer pattern

· Data Bus pattern

· Proxy pattern

· Broker pattern
B.1.1.1 Shared memory pattern

The shared memory pattern uses a common memory area addressable by multiple processors as a means to send messages and share data. This is normally accomplished with the addition of special hardware specifically, multi-ported RAM chips.

The shared memory pattern is a simple solution when data must be shared among more than one processor, but timely responses to messages and divisions between the processors are not required. The pattern almost always involves a combined hardware/software solution. Hardware support for single CPU cycle semaphore and memory access can avoid memory conflicts and data corruption, but use some software support to assist low level hardware features is required for robust access.
Pros and Cons:

This solution requires the use of specialized memory, so it is mostly used for applications and systems in which hardware and software are being co-designed. It is generally not a commercial off-the-shelf solution. The patterns work well when there is a relatively large store of data that must be persistently available to multiple processors. Since the data is stored in a globally accessible space, it can be read and written as often as necessary with low overhead. Because the clients poll the shared memory to see when there is new data for them, this pattern may not result in a timely delivery of messages.
B.1.2 Remote method call pattern

Remote procedure calls (RPCs) are a common method for invoking services synchronously between processors. The object oriented equivalent, removal method calls, work in the same way. This approach requires underlying operating system support, but it works much the same way that local method calls work: the client invokes a service on the server and waits in a blocked condition until the called operation completes.

RPCs allow the invocation of services across a network in a way very similar to how a local service would be invoked. RPCs provide a means to invoke services across a network in a manner as similar as possible to how they are invoked locally.

Pros and Cons:

Remote procedure calls simplify the process of client server communication over a network. The writing of the clients and servers is greatly. Of course, timing is delayed over local calls because of the necessity to translate into network data format and back and because of the network delays. Further, more elaborate error handling may be required because networking infrastructure is inherently less reliable than local calls. If timeliness or reliability of service completion is important, then the underlying transport protocol should be selected with those requirements in mind. ONC (Open Network Computing) RPC, for example, is implemented with UDP (User Datagram Protocol), and unreliable protocol. TCP (Transmission Control Protocol) can be used instead, but the application developer must use lower level calls to achieve this.
B.1.3 Observer pattern

The Observer pattern is perhaps arguably more of a mechanistic design than architectural design pattern. However, it will serve as the basis for of the distribution collaboration architecture patterns, and so it is included here. The Observer pattern (a.k.a. “Publish-Subscribe”) addresses the specific issue of how to notify a set of clients in a timely way that a value that they care about has changed, especially when the notification process is to be repeated for a relatively long period of time. The basic solution offered by the Observer pattern is to have the clients subscribe to the server to be notified about the value in question according to some policy. This policy can be “When the value changes,” “at least every so often,” “at most every so often,” etc. This minimizes computational effort for notification of clients and across a communications bus and minimizes the bus bandwidth required for notification of the appropriate clients.
Pros and Cons

The Observer pattern simplifies the process of managing the sharing of values among a single server with possibly many clients. The simplification occurs and a number of ways. First, the Observer pattern has runtime flexibility. It is easy at run time to change the number of subscribers as well as the identity of the subscribers because the Abstract Subject does not need to have any information about its clients prior to their subscription. Further, all this information that the Abstract Subject needs can be provided by the client during the subscription process. Second, a single policy to the timely or efficient updating of the clients can be centralized in the server and not replicated in the potentially many clients.
B.1.4 Data Bus pattern

The Data Bus pattern further abstracts the Observer Pattern by providing a common (logical) bus to which multiple servers polls their information and where multiple clients come to get various events and data posted to the bus. This pattern is useful when a large number of servers and clients must share data and events and is easily supported by some hardware bus structures that broadcast messages.

The Data Bus pattern provides a single locale (the " Data Bus ") for the location of information to be shared across multiple processors. Client's desired information at a common location for pulling information as desired or subscribing for push data.

The problem with this pattern is that many systems need to share many different data among a mixture of servers and clients, some of whom might not be known when the client or data is designed. This pattern solves the problem by providing a central storage facility into which data that is to be shared may be plugged along with the metadata that describes its contents.

Pros and Cons:

The Data Bus pattern has an advantage in that there is always a single location for clients to go and acquire required data and for servers to publish their data. The Data Bus doesn't understand the semantics of the data that it serves to the clients, but it can manage the data above arbitrarily large set of different data objects and types. The Data Bus is very extensible, and new data object types may be added even at run time without modification to the Data Bus and its closely related classes. The Data Bus location, or at least knowledge of how to send it messages must be known at design time. The location of the Data Bus must be rich enough to store all the instances of the subclasses of the abstract data class. The traffic required to manage the serving of all information contained in the Data Bus may limit that node’s capacity to do other work. The push version of the pattern is a bit more complicated but minimizes traffic over the underlying communications media because data is only set out to the subscribe clients and only when it is appropriate to do so. The pull version, while a bit simpler, may result in more overall bus traffic to do repeated queries for data that may not have changed.

This pattern is useful for symmetric architectures, especially when the servers located on inconvenient processors, such as those with low capacity to manage the required communications traffic or those that may be relatively inaccessible to the clients.

B.1.5 Proxy pattern

The proxy pattern abstracts the true server from the client by means of a “stand in” or surrogate class providing a separation of the client and server, allowing the hiding of specified properties of the server from the clients. The proxy pattern abstracts the true server from the client by means of a “stand in” or surrogate class. There are a number of reasons why this may be useful, such as to hide some particular implementation properties from the clients and thus allow them to vary transparently to the client. For our purposes here, the primary reason to use the proxy pattern is to hide the fact that a server may be actually located in another address space from its client. This allows the server to be located in any accessible location, and the clients need not concern themselves with how to contact the true server to access required information or services.

Pros and Cons:

The pricing pattern does a good job of isolating the subject from knowledge that the server may be remote. The advantage is that the clients are simplified, not having to deal differently with remote and local clients. The pricing pattern also encapsulates the knowledge of how to contact the servers in to the proxy classes so that should the communications media change, fewer classes must be updated.

Because there are usually many fewer client proxy instances (one per day that type per address space) than client instances, the traffic on the communications media is minimized. One message is sent across the bus or network for each proxy, rather than one per client. This reduces the bus traffic, a common bottle neck in embedded in real time systems. Bus traffic is reduced even further because of the use of a subscription policy, resulting in transmission of the data only when necessary, as opposed to polling for the data.
B.1.6 Broker pattern:

The Broker pattern extends the proxy pattern through the inclusion of the Broker- globally visible to both the clients and servers. This Broker facilitates the location of the servers for the clients so that their respective locations need not be known at design time. This means that more complex systems that can use a symmetric deployment architecture, such as is required for dynamic load balancing, can be employed.
Pros and Cons:

The Broker pattern is a very effective means for hiding the remoteness of clients and servers. While not completely successful in hiding all of the details, it nevertheless greatly simplifies the creation of systems with symmetric distribution architectures. There are a number of middle where products that supply ORBs (object request Brokers), which give good, and even real-time, performance. In addition, systems constructed with this distribution architecture are highly scalable and hide the underlying details of the processors, their locations, and the communications media. There is good software support for the creation of models using commercial middleware ORBs.

B.1.7 Comparison of Distributed Computing Architecture Patterns

In summary, these patterns are summarized in B-1.

Table B- 1: Distributed Architecture Pattern Comparison

	#
	Architecture Pattern
	Pros
	Cons

	1
	Shared Memory
	· Data is shared among multiple processors.
	· Latency in response to messages and events,

· Program intensive, usually need specialized hardware to implement.

	2
	Remote Method Call (RMC)
	· Does not require specialized hardware support.

· Allows invocation of remotely located services.
	· Information/program Intensive, No Plug and Play.

· Makes no attempt to optimize network traffic

· Is a call on demand or “pull” architecture

	3
	Observer Pattern
	· Is a Publish-Subscribe Pattern

· Run time flexibility

· Founding concept for Data Bus, Proxy, and Broker Patterns
	· Memory Intensive, Issues with dynamic memory allocation such as timeliness, predictability, memory fragmentation, data corruption.

	4
	Data Bus
	· Provides a single location for clients to get published data.

· Very extensible

· Data objects can be modified at run time
	· Programming intensive; Subject, Client, and listener classes must know how to communicate and Marshall messages to the Data bus.

	5
	Proxy
	· Enhanced efficiency and lower cost

· Decoupling clients from the location of remote server components

· Separation of housekeeping code from functionality
	· Asymmetric distribution, Needs a priori knowledge of the server location, address spaces where objects will run are known at design time.

	6
	Broker
	· Location transparency. Clients do not need to know where servers are located.

· Servers do not need to know where clients are located

· changeability and extensibility of components

· portability of a Broker-based system interoperability between different Broker-based systems

· reusability
	· More heavy weight than the proxy pattern, but more scalable.

· Though there is interoperability between brokers, some vendors do have proprietary methods in their implementations.

B.2 Application Development Environment

Three types of application development products are defined in this section. J2EE, and .NET. The definitions are presented by searchWebServices.com, a TechTarget site for Web Services professionals unless otherwise referenced.

B.2.1 J2EE

J2EE (Java 2 Platform, Enterprise Edition) is a Java platform designed for the mainframe-scale computing typical of large enterprises. Sun Microsystems (together with industry partners such as IBM) designed J2EE to simplify application development in a thin client tiered environment. J2EE simplifies application development and decreases the need for programming and programmer training by creating standardized, reusable modular components and by enabling the tier to handle many aspects of programming automatically.

J2EE includes many components of the Java 2 Platform, Standard Edition (J2SE):

· The Java Development Kit (JDK) is included as the core language package.

· Write Once Run Anywhere technology is included to ensure portability.

· Support is provided for Common Object Request Broker Architecture (CORBA), a predecessor of Enterprise JavaBeans (EJB), so that Java objects can communicate with CORBA objects both locally and over a network through its interface broker.

· Java Database Connectivity 2.0 (JDBC), the Java equivalent to Open Database Connectivity (ODBC), is included as the standard interface for Java databases.

· A security model is included to protect data both locally and in Web-based applications.

J2EE also includes a number of components added to the J2SE model, such as the following:

· Full support is included for Enterprise JavaBeans. EJB is a server-based technology for the delivery of program components in an enterprise environment. It supports the Extensible Markup Language (XML) and has enhanced deployment and security features.

· The Java servlet API (application programming interface) enhances consistency for developers without requiring a graphical user interface (GUI).

· Java Server Pages (JSP) is the Java equivalent to Microsoft's Active Server Pages (ASP) and is used for dynamic Web-enabled data access and manipulation.

The J2EE architecture consists of four major elements:

· The J2EE Application Programming Model is the standard programming model used to facilitate the development of multi-tier, thin client applications.

· The J2EE Platform includes necessary policies and APIs such as the Java servlets and Java Message Service (JMS).

· The J2EE Compatibility Test Suite ensures that J2EE products are compatible with the platform standards.

· The J2EE Reference Implementation explains J2EE capabilities and provides its operational definition.

B.2.2 .NET

.NET is both a business strategy from Microsoft and its collection of programming support for what are known as Web services, the ability to use the Web rather than your own computer for various services. Microsoft's goal is to provide individual and business users with a seamlessly interoperable and Web-enabled interface for applications and computing devices and to make computing activities increasingly Web browser-oriented. The .NET platform includes servers; building-block services, such as Web-based data storage; and device software. It also includes Passport, Microsoft's fill-in-the-form-only-once identity verification service.

The .NET platform is expected to provide:

· The ability to make the entire range of computing devices work together and to have user information automatically updated and synchronized on all of them

· Increased interactive capability for Web sites, enabled by greater use of XML (Extensible Markup Language) rather than HTML

· A premium online subscription service, that will feature customized access and delivery of products and services to the user from a central starting point for the management of various applications, such as e-mail, for example, or software, such as Office .NET

· Centralized data storage, which will increase efficiency and ease of access to information, as well as synchronization of information among users and devices

· The ability to integrate various communications media, such as e-mail, faxes, and telephones

· For developers, the ability to create reusable modules, which should increase productivity and reduce the number of programming errors

B.3 Distributed Middleware Technologies

Examples of distributed middleware technologies are categorized as Object request broker based,, Remote Procedure Call based and Message-based. Under each category associated technologies are defined. The definitions are presented by searchWebServices.com, a TechTarget site for Web Services professionals unless otherwise referenced.
B.3.1 Object Request Broker Based Middleware

In this section, example middleware products are OMG CORBA, Sun’s Remote Method Invocation (RMI), Microsoft’s Distributed Component Object Model (DCOM/COM) and Sun Enterprise Java Bean (EJB).

B.3.1.1 OMG CORBA

Common Object Request Broker Architecture (CORBA) is an architecture and specification for creating, distributing, and managing distributed program objects in a network. It allows programs at different locations and developed by different vendors to communicate in a network through an "interface broker." CORBA was developed by a consortium of vendors through the Object Management Group (OMG), which currently includes over 500 member companies. Both International Organization for Standardization (ISO) and X/Open have sanctioned CORBA as the standard architecture for distributed objects (which are also known as components). CORBA 3 is the latest level.

CORBA as it stands for general purposes clearly satisfies the requirements of location transparency, performance transparency, predictability transparency and reliability transparency. Therefore it is widely used in Enterprise Distributed Computing (EDC) environments. However, as stated before, the FAA is a very dynamic and complex environment that has requirements go beyond that of EDC systems. EDC mainly focuses on usability and developer productivity. While these things are important, EDC tends to ignore thing relevant to real-time systems. The OMG addresses the short comings of general purpose CORBA such its lack of QoS specifications, QoS enforcement, real-time programming features and performance optimizations with Real-Time (RT) CORBA..

SWIM does and will in the future always have the requirement to deliver data in real time. Therefore it will have to have an architecture that support general purpose as well as specialist applications and do it without tension. Real-time CORBA systems differ from general purpose CORBA systems because real-time will dictate a measure of system-wide design control to deliver predictability and therefore also some control over which ORB to deploy. Real-time CORBA defines a QoS framework that includes policy management for request priority, queuing, message delivery quality, timeouts, etc. Real-time CORBA is an optional set of extensions to CORBA tailored to equip ORBs to be used as a component of a real-time system. In SWIM, there will be a need for the SWIM developers in some instances to pay attention to the allocation of resources and to the predictability of system execution because timeliness will be as important as functionality. RT CORBA provides the handles needed to manage resources and predictability. RT CORBA provides a single compliance point that spans various area of real time system development such as “hard” and “Soft” real-time, different resource contention pools, scheduling algorithms, etc. The RT CORBA also brings interoperability, flexibility, and portability to real-time system implementation in addition to end-to-end predictability which is very important to meeting real-time data requirements.
B.3.1.2 RMI

RMI (Remote Method Invocation) is a way that a programmer, using the Java programming language and development environment, can write object-oriented programming in which objects on different computers can interact in a distributed network. RMI is the Java version of what is generally known as a remote procedure call (RPC), but with the ability to pass one or more objects along with the request. The object can include information that will change the service that is performed in the remote computer. Sun Microsystems, the inventors of Java, calls this "moving behavior." For example, when a user at a remote computer fills out an expense account, the Java program interacting with the user could communicate, using RMI, with a Java program in another computer that always had the latest policy about expense reporting. In reply, that program would send back an object and associated method information that would enable the remote computer program to screen the user's expense account data in a way that was consistent with the latest policy. The user and the company both would save time by catching mistakes early. Whenever the company policy changed, it would require a change to a program in only one computer.

Sun calls its object parameter-passing mechanism object serialization. An RMI request is a request to invoke the method of a remote object. The request has the same syntax as a request to invoke an object method in the same (local) computer. In general, RMI is designed to preserve the object model and its advantages across a network.

RMI is implemented as three layers:

· A stub program in the client side of the client/server relationship, and a corresponding skeleton at the server end. The stub appears to the calling program to be the program being called for a service. (Sun uses the term proxy as a synonym for stub.)

· A Remote Reference Layer that can behave differently depending on the parameters passed by the calling program. For example, this layer can determine whether the request is to call a single remote service or multiple remote programs as in a multicast.

· A Transport Connection Layer, which sets up and manages the request.

A single request travels down through the layers on one computer and up through the layers at the other end.

RMI is supplied as part of Sun MicroSystem's Java Development Kit (JDK).

B.3.1.3 DCOM

DCOM (Distributed Component Object Model) is a set of Microsoft concepts and program interfaces in which client program objects can request services from server program objects on other computers in a network. DCOM is based on the Component Object Model (COM), which provides a set of interfaces allowing clients and servers to communicate within the same computer (that is running Windows 95 or a later version).

For example, you can create a page for a Web site that contains a script or program that can be processed (before being sent to a requesting user) not on the Web site server but on another, more specialized server in the network. Using DCOM interfaces, the Web server site program (now acting as a client object) can forward a Remote Procedure Call (RPC) to the specialized server object, which provides the necessary processing and returns the result to the Web server site. It passes the result on to the Web page viewer.

DCOM can also work on a network within an enterprise or on other networks besides the public Internet. It uses TCP/IP and Hypertext Transfer Protocol. DCOM comes as part of the Windows operating systems. DCOM is or soon will be available on all major UNIX platforms and on IBM's large server products. DCOM replaces OLE Remote Automation.

DCOM is generally equivalent to the Common Object Request Broker Architecture (CORBA) in terms of providing a set of distributed services. DCOM is Microsoft's approach to a network-wide environment for program and data objects. CORBA is sponsored by the rest of the information technology industry under the auspices of the Object Management Group (OMG).

B.3.1.4 Enterprise JaveBean (EJB)

Enterprise JavaBeans (EJB) is an architecture for setting up program components, written in the Java programming language, that run in the server parts of a computer network that uses the client/server model. Enterprise JavaBeans is built on the JavaBeans technology for distributing program components (which are called Beans, using the coffee metaphor) to clients in a network. Enterprise JavaBeans offers enterprises the advantage of being able to control change at the server rather than having to update each individual computer with a client whenever a new program component is changed or added. EJB components have the advantage of being reusable in multiple applications. To deploy an EJB Bean or component, it must be part of a specific application, which is called a container.

Originated by Sun Microsystems, Enterprise JavaBeans is roughly equivalent to Microsoft's Component Object Model/Distributed Component Object Model architecture, but, like all Java-based architectures, programs can be deployed across all major operating systems, not just Windows. EJB's program components are generally known as servlets (little server programs). The application or container that runs the servlets is sometimes called an application server. A typical use of servlets is to replace Web programs that use the common gateway interface (CGI) and a Practical Extraction and Reporting Language script. Another general use is to provide an interface between Web users and a legacy application mainframe application and its database.

In Enterprise JavaBeans, there are two types of beans: session beans and entity beans. An entity bean is described as one that, unlike a session bean, has persistence and can retain its original behavior or state.

B.3.2 RPC-based Middleware

Products in this section are SUN ONC, Linux RPCs, OSF DCE. The definitions are presented by searchWebServices.com, a TechTarget site for Web Services professionals unless otherwise referenced.
B.3.2.1 SUN ONC

ONC RPC provides an advanced client/server programming environment that is easy to use, allowing you to build applications that execute procedures on other network computers without having to deal with the fact that the procedures are not executed locally. ONC RPC provides a mechanism whereby one process (the "client" process) can have another process (the "server" process) execute a procedure call as if it was a subroutine on the local system.

B.3.2.2 OSF DCE

In network computing, DCE (Distributed Computing Environment) is an industry-standard software technology for setting up and managing computing and data exchange in a system of distributed computers. DCE is typically used in a larger network of computing systems that include different size servers scattered geographically. DCE uses the client/server model. Using DCE, application users can use applications and data at remote servers. Application programmers need not be aware of where their programs will run or where the data will be located.

Much of DCE setup requires the preparation of distributed directories so that DCE applications and related data can be located when they are being used. DCE includes security support and some implementations provide support for access to popular databases such as IBM's CICS, IMS, and DB2 databases.

DCE was developed by the Open Software Foundation (OSF) using software technologies contributed by some of its member companies.

B.3.3 Message-Based Middleware

Middleware products in this section are IBM MQSeriesand Sun/ToolTalk. The definitions are presented by searchWebServices.com, a TechTarget site for Web Services professionals unless otherwise referenced.
B.3.3.1 IBM MQSeries

MQSeries is an IBM software family whose components are used to tie together other software applications so that they can work together. This type of application is often known as business integration software or middleware.

MQSeries consists of three products:

· MQSeries Messaging, which provides the communication mechanism between applications on different platforms

· MQSeries Integrator, which centralizes and applies business operations rules

· MQSeries Workflow, which enables the capture, visualization, and automation of business processes

The point of business integration is to connect different computer systems, diverse geographical locations, and dissimilar IT infrastructures so that a seamless operation can be run. IBM's MQSeries supplies communications between applications, or between users and a set of applications on dissimilar systems. It has grown in popularity as applications are made available over the Internet because of its support of over 35 platforms and its ability to integrate disparate automation systems.

An additional helpful feature is that its messaging scheme requires the application that receives the the message to confirm receipt. If no confirmation materializes, the message is re-sent by the MQSeries.

B.3.3.2 Sun ToolTalk

The ToolTalk service enables independent applications to communicate with each other without having direct knowledge of each other. Applications create and send ToolTalk messages to communicate with each other. The ToolTalk service receives these messages, determines the recipients, and then delivers the messages to the appropriate applications. ToolTalk is designed to make it easy to put a messaging interface on any application, regardless of whether the application

· runs only on Solaris or also on other popular UNIX platforms;

· is multi-threaded or single-threaded;

· has a command-line or graphical user interface;

· installs signal handlers;

· is an RPC server;

· uses its own event loop, or that of a window system toolkit.

Appendix C. Security Information Tables

C.1 Threat Tables

Table C- 1: Derived Threats to SWIM Applications

	Threat
	Threat Description
	Threat
	Target

	Application Program

	TSA.IncDes
	Incorrect Design
	Design Flaws
	Integrity

Availability

	TSA.IncDev
	Incorrect Development
	Development Flaws
	Integrity

Availability

	TSA.InstallErr
	Install Errors
	Application is installed incorrectly and allows security to be compromised
	Confidentiality

Integrity

Availability

	TSA.UseIncorr
	Incorrect Use
	End user incorrectly interprets Application
	Integrity

	TSA.AdminErr
	Administration Errors
	Application is incorrectly Administered
	Confidentiality

Integrity

Availability

	TSA.UseInapp
	Inappropriate Use
	Application user tries to access system files
	Confidentiality

	TSA.MaintErr
	Maintenance Errors
	Application is compromised with a Software Update
	Integrity

Availability

	TSA.ServProgFailure
	Server Application Program Failure
	Software Logic fails or is corrupted
	Integrity

Availability

	TSA.ServDataFailure
	 Server Data Failures
	Backend Data Feeds Disrupted

Data Corrupted
	Integrity

Availability

	TSA.ProgIntegrity
	Program Integrity
	Program Integrity compromised by data feed, HW, or transmission
	Integrity

Availability

	TSA.ProgAttack
	Program Attacked
	Attacked by Backdoor, Logic Bomb, Virus Logic
	Integrity

Availability

	TSA.BufferOverr
	Buffer Overrun
	Exploit buffer overruns, file race conditions
	Availability

	TSA.InputDataInv
	 Input Data Invalid
	Invalid or unexpectedly large inputs cause program failure or integrity problems
	Integrity

Availability

	TSA.LogCorr
	Log File Corrupted
	Loss of audit or historical data.
	Availability

Accountability

	TSA.ExcResCons
	Consumes excess resources
	The Application consumes excess system resources
	Availability

	
	
	
	

	Client-Server

	TSA.CSFailure
	 Client-Server Failure
	Communication connection disruption

Loss of connection integrity
	Integrity

Availability

	
	
	
	

	Graphical User Interface (GUI) Program

	TSA.GFailure
	 GUI Failure
	Graphic User Interface Failure
	Integrity

Availability

Table C- 2: Derived Threats to SWIM Systems (Operational Environment Threats)

	Threat Name
	Threat Description
	Threat
	Target

	Personnel

	TSS.PerHackRes
	Unauthorized user controls system resources
	An unauthorized user executes commands, sends data, or performs other operations that make system resources unavailable (denial of service) to authorized users. Resources include bandwidth, processor time, memory, and storage.
	Availability

	TSS.PerHackAcc
	Hacker gains external access
	Unauthorized external user (hacker) gains undetected access to a system due to missing, weak or incorrectly implemented access control
	Confidentiality

Integrity

Availability

	TSS.PerSetErr
	Install Setup Error
	System vulnerable to attack
	Confidentiality

Integrity

Availability

	TSS.PerAdmErrCom
	Administrative errors of commission
	An administrator commits errors that directly compromises security policy enforced by the system or application
	Confidentiality

Integrity

Availability

	TSS.PerAdmErrOm
	Administrative errors of omission
	The system administrator fails to perform some function essential to security. (i.e. does not keep patches up to date)
	Confidentiality

Integrity

Availability

	TSS.PerHosAdmin
	Hostile administrator modification of user or system data
	An administrator maliciously obstructs organizational security objectives or modifies the system's configuration to allow security violations to occur
	Confidentiality

Integrity

Availability

	TSS.PerAdmUsrPriv
	Administrator violates user privacy policy
	An administrator learns the identity (or other privacy related information) of user(s) in violation of user privacy policy.
	Confidentiality

Integrity

	

	Information Technology

	Hardware

	TSS.HWServFail
	Server Failure
	Critical System Component Fails
	Availability

	TSS. HWWsFail
	Distributed Workstation Failure
	Critical System Component Fails
	Availability

	TSS. HWMonFail
	Monitor Failure
	Critical System Component Fails
	Availability

	TSS. HWPowFail
	Power Supply Failures
	Critical System Component Fails
	Availability

	

	Software

	TSS.SWCrash
	Crash
	Failure of System Software causes crash
	Availability

	TSS.SWSysSpoof
	Legitimate system services are spoofed
	Users are tricked into using spurious system services (Trojan Horse)
	Confidentiality

Integrity

Availability

	TSS.SWKeyCapPass
	Keystroke capture user’s password
	Admin Security Risk
	Confidentiality

Integrity

	TSS.SWLogCapPass
	Trojan horse / fake login program to capture passwords
	Admin Security Risk
	Confidentiality

Integrity

	TSS.SWDicPass
	Dictionary-based Weak Passwords
	Admin Security Risk

	Confidentiality

Integrity

	TSS.SWAdmAbuAcc
	Administrators Abuse Remote System access
	Admin Security Risk
	Confidentiality

Integrity

	TSS.SWMsConfig
	Mis-configuration of Security Attributes
	Security Attributes are improperly configured or not configured at all
	Confidentiality

Integrity

Availability

	TSS.SWSecRoles
	No Security Roles
	Security-relevant roles will be established and individuals will be associated with these roles
	Confidentiality

Integrity

Availability

	TSS.SWConfMgmt
	No Configuration Management
	Admin cannot properly maintain systems
	Confidentiality

Integrity

	TSS.SWAudRec
	Full Audit Records
	Audit records incomplete, as allocated storage space is full
	Integrity

Availability

Accountability

	TSS.SWInsuffStor
	Insufficient Storage
	Insufficient storage for full system functionality
	Integrity

Availability

	

	Communications

	TSS.CommDegComm
	Degraded Communication

	The systems will support a QOS (quality of service) requirement for alerts based on degraded connectivity or bandwidth.
	Availability

	TSS.CommFailComm
	Communication Failures
	Network connection line disrupted.
	Availability

	TSS.CommConnHij
	Connection Hijacking
	Network Security Risk.
	Availability

	TSS.CommHackComm
	Hacker eavesdrops communications
	Hacker obtains system data by eavesdropping on communications lines.
	Confidentiality

	TSS.CommARPSpoof
	ARP Spoofing
	Network Security Risk.
	Availability

	TSS.CommIPSniff
	IP Sniffing
	Network Security Risk.
	Availability

	TSS.CommDialAcc
	Unauthorized Modems for Dial-in/out Access
	Network Security Risk.
	Availability

	TSS.CommF/WLog
	Disrupt communications from a firewall logons
	Network Security Risk.
	Availability

Table C- 3: Identified Threats to SWIM

	Threat # (from NAS PP Template)
	Threat Discussion (from NAS PP Template)
	Target
	Applicable to SWIM
	Assigned Description
	Assigned Threat Name

	Physical

	T4
	Someone may physically attack the SWIM System and compromise its information security.
	Availability
	YES
	Terrorists, Theft, etc.
	TSS.PhyTerror

	T20
	Natural disaster or deliberate attack could result in critical operations that are halted and/or SWIM services that are interrupted.
	Availability
	YES
	Fire, Flood, etc.
	TSS.PhyNatDisaster

	
	
	
	
	
	

	Personnel

	T1
	An unauthorized person may gain logical access to the SWIM System.
	Confidentiality

Integrity

Availability

Authenticity
	YES
	Hacker gains system access
	TSS.PerUnLoAccess

	T2
	An authorized user (insider), or an unauthorized person masquerading as an authorized user, may gain access to the SWIM System resources or perform operations for which no access rights have been granted.
	Confidentiality

Integrity

Availability

Authenticity
	YES
	Hacker masquerades
	TSS.PerHckMsq

	T3
	One or more persons may engage in a denial of service attack, which may cause the resources of the SWIM System to become unavailable.
	Availability
	YES
	Hacker performs DoS attack
	TSS.PerHckDoS

	T7
	Architecture, design, implementation, and maintenance flaws in the SWIM System may lead to information security failures.
	Confidentiality

Integrity

Authenticity

Accountability

Availability
	YES
	SWIM development flaws
	TSS.PerDevFlw

	T9
	Someone may introduce unauthorized software into the SWIM System.
	Integrity

Authenticity
	YES
	Unauthorized software use
	TSS.PerUnSoftUse

	T10
	Someone may tamper with the protection-relevant mechanisms of the SWIM System.
	Confidentiality

Integrity

Availability
	YES
	Unauthorized SWIM security changes
	TSS.PerUnChange

	T11
	People in trusted roles, such as administration and maintenance of the SWIM System, may cause information security failures.
	Confidentiality

Integrity

Availability

Authenticity

Accountability
	YES
	Administrator’s negligence
	TSS.PerAdmNgl

	T15
	Limitations and flaws in countermeasures and mitigation strategies may be circumvented by a knowledgeable adversary.
	Confidentiality

Integrity

Availability

Authenticity

Accountability
	YES
	Technological or policy flaws
	TSS.PerTchPlcFlaw

	T16
	An authenticated user may gain non-malicious, unauthorized access using non-technical means.
	Confidentiality

Authenticity

Integrity
	YES
	Unauthorized Non-Malicious access
	TSS.PerUnNonMalAcc

	T17
	An individual, other than an authenticated user, may gain access to processing resources or information using non-technical means.
	Confidentiality

Authenticity

Integrity
	YES
	Unauthorized access
	TSS.PerUnAccess

	T18
	 seq Level3 \r 0 \h

 seq Level3 \r 0 \h The development and assignment of user roles may be done in a manner that undermines security.
	Confidentiality

Authenticity
	YES
	Erroneous role assignments
	TSS.PerErrRole

	T19
	User input error could result in incorrect data resulting in corrupted output information or denial of service.
	Integrity

Availability
	YES
	Erroneous data entry
	TSS.PerErrDtEntry

	

	Hardware

	T8
	A system crash may compromise the secure state of the SWIM System.
	Confidentiality

Integrity

Availability

Authenticity

Accountability
	YES
	SWIM component failure
	TSS.HWCmpFailure

	

	Software

	T5
	Security-relevant events may not be recorded or may not be traceable.
	Confidentiality

Integrity

Authenticity

Accountability
	YES
	Untraceable or unrecorded security breaches
	TSS.SWSecBreach

	T12
	Improper operation of the SWIM System may cause information security failures.
	Confidentiality

Integrity

Availability

Authenticity

Accountability
	YES
	Improper SWIM operation
	TSS.SWImprOp

	T13
	Improper restart and/or recovery from failure of the SWIM System may cause information security failures.
	Confidentiality

Integrity

Availability

Authenticity

Accountability
	YES
	Improper restart/recovery
	TSS.SWImpResRec

	

	Communications

	T6
	Outsiders may intrude on the SWIM System communications capabilities.
	Confidentiality

Integrity

Availability
	YES
	External spoofing
	TSS.CommExtSpoof

	

	General

	T14
	Changes in the environment of the SWIM System may introduce or exacerbate vulnerabilities.
	Confidentiality

Integrity

Availability
	YES
	Environmental changes
	TSS.GenEnvChange

C.2 SWIM Security Policies

Table C- 4 : Derived SWIM Application Policies

	Policy Name
	Policy Description
	Policy
	Goals Achieved

	Application Program

	PSA.AppDesign
	Application Design
	Applications must complete a design review, which includes an information security assessment.
	Integrity

	PSA.AppDoc
	Application Documentation
	Applications must be fully documented to include: application structures, components, dataflow, external components, files, directories, log formats, and locking /permissions
	Integrity

	PSA.ApplstPriv
	Application Least Privilege
	Application programs, processes and file must use the least privilege capable of supporting the application tasks.
	Availability

	PSA.AppRev
	Application Reviews
	Application must have their code reviewed and verified.
	Integrity

	PSA.AppTest
	Application Tests
	Application must be fully tested to consider security risks.
	Confidentiality

Integrity

Availability

	PSA.AppDevTst
	Application Development and Test Systems
	Applications will be developed and tested on systems independent of the operational environment.
	Integrity

Availability

	PSA.AppLog
	Application Logs
	Applications are required to create a log of events (date, time, process, User ID, Workstation ID, IP address, error conditions, etc.
	Accountability

	PSA.AppPrgInt
	Application Program Integrity
	Executable programs will be automatically validated for integrity while executing.
	Integrity

	PSA.AppDataInt
	Applications Data Integrity
	Program data input and output will be validated to maximize data integrity.
	Integrity

	
	
	
	

	Client-Server

	PSA.CS
	Program Connection
	“System” connection information is encrypted for transmission between Clients and Server.
	Confidentiality

Integrity

	PSA.CS
	Data Transfers
	 Data information is encrypted
	Confidentiality

Integrity

	

	Graphical User Interface (GUI) Program

	PSA.GWxID
	Workstation ID’s
	Each Display station is configured with a unique workstation ID that is validated by the server.
	Authenticity

Table C- 5: Derived SWIM System Policies (operational environment policies)

	Policy Name
	Policy Description
	Policy
	Goals Achieved
	Applicable to SWIM

	Personnel

	PSS.PerSecViol
	All SWIM users are held accountable for any Security Violations
	Controls are in place to mitigate personnel issues.
	Accountability
	YES

	PSS.PerUserReg
	User Registration
	Users who are authorized to access SWIM system shall be registered with some SWIM certified authority.
	Confidentiality

Integrity

Availability

Authenticity

Accountability
	YES

	PSS.PerSWIMUseTrain
	SWIM use Training
	All users of SWIM applications will be required to attend regular training pertaining to proper functional use of SWIM Applications.
	Confidentiality

Integrity

Availability

Authenticity

Accountability
	YES

	PSS.PerSecTrain
	Security Training
	All users of SWIM Applications will be required to attend regular training on security measures in relation to SWIM Applications.
	Confidentiality

Integrity

Availability

Authenticity
	YES

	PSS.PerAdminPlcy
	Administration Policies
	Policies concerning System Administration, maintenance and training (user & administrator) will be strictly enforced and periodically reviewed for update.
	Confidentiality

Integrity

Availability

Authenticity

Accountability
	YES

	PSS.PerUserAcct
	User Accountability
	All users of the system will be held accountable for actions and shall comply with proper usage of the system.
	Accountability
	YES

	PSS.PerAdt&Logs
	Auditing & Logs
	Audit logs will be routinely reviewed to assure the system is operational and secure.
	Accountability
	YES

	

	Information Technology

	Hardware

	PSS.HWHardRed
	Hardware Redundancy to eliminate single points of failure.
	Hardware redundancy is required for mission critical systems.
	Availability
	YES

	PSS.HWMaint&Repair
	Maintenance and repairs shall occur during specified maintenance windows
	Maintenance windows shall minimize disruption to system usage.
	Availability
	YES

	

	Software

	PSS.SWPass
	Strong Password Policy
	Do not write down, share, or use default passwords, and passwords must have some minimum specific length of characters
	Confidentiality

Integrity

Authenticity

Accountability
	YES

	PSS.SWLog-On
	Strong Log on Policy
	The SWIM System requires all users to have a log-on account and password.
	Confidentiality

Integrity

Authenticity

Accountability
	YES

	PSS.SWPubSoft
	Public Software
	No public domain, unlicensed or game software is allowed on the SWIM system.
	Confidentiality

Integrity
	YES

	PSS.SWSoftUpdt
	System Software Updates
	All software updates must be approved by the SWIM certified authority (review board).
	Integrity
	YES

	PSS.SWTrackVuln
	Track Software Vulnerabilities
	The SWIM system will require mission critical software track and close system security vulnerabilities.
	Confidentiality

Integrity

Availability

Authenticity

Accountability
	YES

	PSS.SWAnti-VrSoft
	Anti-virus Software on Servers and Workstations
	All SWIM Servers and workstations are required to run anti-virus software in order to reduce their potential to initiate or support a service attack against SWIM applications or systems.
	Confidentiality

Integrity

Availability

Authenticity

Accountability
	YES

	PSS.SWAccess
	Access Control
	Role Based Access Control
	Confidentiality

Integrity

Availability
	

	PSS.SWAuditLog
	Auditing and Logs
	Audit logs will be routinely reviewed to assure the system is operational and secure
	Accountability
	

	

	Communications

	

	PSS.Comm
	External communications
	No external modems are allowed on the SWIM System Servers or Workstations.
	Confidentiality

Integrity
	YES

	PSS.Comm
	Network monitoring
	Network sniffing hardware or software cannot be installed on the communications infrastructure without some ‘SWIM Certified Authority’ approval.
	Confidentiality

Integrity
	YES

	

	General

	PSS.IntrnAccess
	Internet Access
	No internet access is allowed on the SWIM System.
	Confidentiality

Integrity
	YES

Table C- 6: Identified Policies for SWIM

	Policy # from NAS PP Template
	Policy
	Reference
	Goals Achieved
	Applicable to SWIM
	Assigned Policy Description
	Assigned Policy Name

	Physical

	PG – 20
	The processing resources of the SWIM System must be physically protected in order to ensure that security objectives are met. These resources will be located within controlled access facilities satisfying FAA standards that mitigate unauthorized physical access.
	NAS PP TEMP
	Confidentiality Integrity

Availability

Authenticity

Accountability
	YES
	SWIM Processing Resources
	PSS.PhyProRes

	

	Personnel
	
	
	
	
	
	

	PG – 6
	The system shall implement strong authentication of network users.
	ISSA-C2
	Confidentiality

Integrity
	YES
	Network User Authentication
	PSS.PerUsrAuth

	PG – 21
	Authorized Administrators and Authenticated users of the SWIM System must be adequately trained, enabling them to: (1) effectively implement organizational security policies with respect to their discretionary actions, and (2) support the need for non-discretionary controls implemented to enforce these policies. This will include provisions for periodic and regularly scheduled education and training activities.
	NAS PP TEMP, ISSA-M9
	Confidentiality Integrity

Availability

Authenticity

Accountability
	YES
	Administrators and users training
	

	PG – 24
	The system will have documentation describing the Security Features of the systems that are available for authorized users to employ to protect their information (e.g., a Secure Facility User’s Guide).
	ISSA-M10
	Confidentiality Integrity

Availability

Authenticity

Accountability
	YES
	SWIM documentation for security features
	PSS.PerSecFeaDoc

	PG – 25
	The system will have documentation describing the Security Configuration parameters that are available to Authorized Security Administrators.
	ISSA-M10
	Confidentiality Integrity

Availability

Authenticity

Accountability
	YES
	SWIM documentation for security configuration
	PSS.PerSecConDoc

	PG – 30
	Authorized security administrators and users can be reasonably trusted to correctly apply the FAA’s security policies and will be held accountable for security-relevant actions.
	NAS PP TEMP
	Accountability
	YES
	Administrators and users accountability
	PSS.PerAdUsAcc

	PG – 38
	The system shall automatically force a user logoff after an administrator-defined number of minutes of inactivity and send an alert message to an administrator.
	ISSA-P12
	Confidentiality Integrity

Availability

Authenticity

Accountability
	YES
	Automatic log-off from inactivity
	PSS.PerAutLogOff

	

	Information Technology

	Software

	PG -1
	The system shall be capable of assigning a unique identifier to each authenticated network user, (e.g., humans, devices, and processes).
	ISSA-P1,

ISSA-P2,

ISSA-P13
	Authenticity

Availability

Accountability
	YES
	Assigning identifier
	PSS.SWAssgIdent

	PG -2
	The system shall be capable of authenticating individual entities (humans and, where appropriate, information systems) identity before allowing any user to perform any actions other than a well-defined set of operations (e.g., reading from a public web site).
	ISSA-P3,

NAS PP TEMP,

ISSA-P14
	Authenticity
	YES
	Network Entity Authentication
	PSS.SWEntAuth

	PG - 3
	If passwords are used for authentication, the system shall proactively maintain “strong” password instantiations and shall not allow the use of dictionary words, numerical representations of dates, and other weak, guessable passwords.
	ISSA-M1,

 ISSA-R2
	Integrity

Availability

	YES
	Password Protection
	PSS.SWPassProt

	PG – 4
	If passwords are not adequate for authentication, the system shall be capable of strongly authenticating the claimed user identity before allowing any user to perform any actions other than a well-defined set of operations (e.g., reading from a public web site).
	ISSA-R1
	Authenticity

	YES
	User Authentication
	PSS.SW

	PG – 5
	Passwords shall have a defined lifetime and not be reused.
	
	Confidentiality

Integrity
	YES
	Password Life
	PSS.SWPassLife

	PG – 7
	The system shall automatically suspend user accounts after an administrator-defined number of failed logon attempts.
	ISSA-P11
	Confidentiality
	YES
	Failed Log-on attempts
	PSS.SWLogonFail

	PG – 8
	The system shall display the standard FAA “Logon Warning Banner” (standard FAA requirement) at logon.
	ISSA-P15
	Accountability
	n/a
	Logon Warning Banner
	PSS.SWBanner

	PG – 9
	The system shall be capable of auditing in support of individual accountability and detection and response to insecurity.
	ISSA-P6,

NAS PP TEMP
	Accountability
	YES
	Auditing
	PSS.SWAuditing

	PG - 10
	The system shall protect audit log files against deletion and modification of audit log records, even by system administrators.
	ISSA-P8
	Accountability
	YES
	Audit-log files protection
	PSS.SWlogProt

	PG – 11
	The system shall maintain and protect comprehensive logs of Security Relevant Events from unauthorized deletion or modification.
	ISSA-M2,

 ISSA-C5
	Accountability
	YES
	Security relevant event’s logs protection
	PSS.SWEventProt

	PG – 12
	The system shall be capable of providing resource allocation features having a measure of resistance to resource depletion.
	ISSA-P9
	Availability
	n/a
	Resource allocation features
	PSS.SWResAlloc

	PG – 13
	The system shall provide [secure] recovery features providing a measure of survivability in the face of system failures and insecurities.
	ISSA-R3
	Availability
	YES
	System recovery features
	PSS.SWRecFeature

	PG – 14
	The system shall be capable of executing a defined access control policy.
	ISSA-P4
	Accountability
	YES
	Access control policy
	PSS.SWAccControl

	PG - 15
	The system shall be capable of enabling access authorization management; i.e., the initialization, assignment, and modification of access rights (e.g., read, write, execute) to data objects with respect to: (1) active entity name or group membership, and (2) such constraints as time-of-day and port-of-entry.
	ISSA-P5,

NAS PP TEMP
	Accountability
	YES
	Access authorization management
	PSS.SWAccAuthMgmt

	PG – 16
	The system shall be capable of enforcing separation of duties through its role-based ability to restrict users to specific data objects and to specific actions upon those objects.
	NAS PP TEMP
	Accountability
	YES
	Role-based access control
	PSS.SWRBAC

	PG – 17
	The system shall be capable of controlled sharing of resources, such as printer and mass storage, across a network.
	NAS PP TEMP
	Availability
	YES
	Control resource sharing
	PSS.SWCrtlShr

	PG – 18
	The system shall protect Information system security data and functionality from all unauthorized access.
	ISSA-R10, ISSA-C8
	Confidentiality
	YES
	Security data access control
	PSS.SWDataAccCrtl

	PG – 19
	The system shall employ mechanisms that [support operational procedures to] take into account the risks associated with information being processed based on the results of a Risk Assessment. It shall be capable of performing cryptographic processing based on the results of a Risk Assessment for file encryption, authentication, data integrity, and non-repudiation functionality.
	NAS PP TEMP, ISSA-R5
	Accountability

Confidentiality

Integrity

Authenticity
	YES
	Cryptographic processing
	PS.SWCryptProc

	PG – 22
	The system shall be the object of periodic host- and network-based vulnerability assessments.
	ISSA-R8,

ISSA-C4,

ISSA-M3
	Confidentiality Integrity

Availability

Authenticity

Accountability
	YES
	Host/Network based vulnerability assessment
	PSS.SWVulAssess

	PG – 23

	Following system failure, systems shall recover in a secure state, consistent with PG-49.
	ISSA-R12
	Confidentiality Integrity

Availability

Authenticity

Accountability
	YES
	System recovery
	PSS.SWSysRec

	PG – 26
	Security configurations shall regularly be assessed and updated as appropriate.
	ISSA-M4
	Confidentiality Integrity

Availability

Authenticity

Accountability
	YES
	Security configuratio- ns update
	PSS.SWConfUpdt

	PG – 28
	The system shall provide for Configuration Management (CM) of system information security functionality.
	ISSA-M11
	Confidentiality Integrity

Availability

Authenticity

Accountability
	YES
	Configuration management
	PSS.SWConfMgmt

	PG – 40
	The system shall be capable of centralized security incident reporting.
	ISSA-M5
	Confidentiality Integrity

Availability

Authenticity

Accountability
	YES
	Centralized reporting
	PSS.SWCentrrep

	PG – 46
	At start-up, the system shall perform a self-check for the presence and correct operating capability of the Security Function, and shall abort and alarm negative findings.
	ISSA-R11
	Integrity
	YES
	Start-up self-check
	PSS.SWStartUpChck

	PG – 47
	The system shall be capable of monitoring file integrity and generating alerts when file integrity is compromised.
	ISSA-R7
	Integrity
	YES
	Integrity monitoring
	PSS.SWIntMonitor

	PG – 48
	The system shall be capable of removing or isolating malicious code and data from executable programs and communications traffic.
	ISSA-C6,

ISSA-P10
	Integrity
	YES
	Removing malicious code
	PSS.SWRemMaliCode

	PG – 49
	Based on the results of a Risk Assessment, the system shall provide mechanisms for detecting host-based and network-based insecurities.
	ISSA-C7,

ISSA-P7,

ISSA-R9
	Integrity, Availability
	YES
	Network/host based insecurities detection
	PSS.SWInsecDet

	

	Communication

	PG - 42
	The system shall implement the defined security policy for inbound and outbound packet transmission using COTS technology such as screening/firewall/proxy server functionality, as appropriate.
	ISSA-C3
	Confidentiality Integrity

Availability

Authenticity

Accountability
	YES
	Packet transmission security
	PSS.CommTrnsSec

	PG - 43
	Based on the results of a Risk Assessment, the system shall be capable of transmitting and receiving cryptographically-processed data at the transport layer and below.
	ISSA-C1
	Confidentiality, Integrity
	YES
	Handling encrypted data at or below transport layer
	PSS.CommHndlCryData

	PG – 44
	Based on the results of a Risk Assessment, the system shall be capable of transmitting and receiving cryptographically-processed data to support file encryption, authentication, data integrity, and non-repudiation functionality.
	ISSA-R5,

ISSA-R6
	Confidentiality, Integrity
	YES
	Support security functionality
	PSS.CommSecuFunct

	PG – 45
	Information flow among SWIM System between SWIM System and other non-SWIM IT systems must be in accordance with established FAA information flow policies.
	NAS PP TEMP
	Confidentiality, Integrity
	YES
	Information flow
	PSS.CommInfFlow

	

	General

	PG – 27
	The system shall maintain policy and procedures for handling security incidents.
	ISSA-M6
	Confidentiality Integrity

Availability

Authenticity

Accountability
	YES
	Policies for security incidents
	PSS.SecIncPol

	PG – 29
	The system shall undergo periodic ISS-related rectification as prescribed by policy.
	ISSA-M12
	Confidentiality Integrity

Availability

Authenticity

Accountability
	YES
	Periodic rectification
	PSS.PerRectf

	PG – 31
	The system must be developed to be consistent with current best commercial practice for IT development. The system must be implemented and operated in a manner that represents due care and diligence with respect to risks to the FAA. The system must address secure delivery, installation, generation, and start-up of the SWIM System.
	ISSA-R4,

NAS PP TEMP
	Confidentiality Integrity

Availability

Authenticity

Accountability
	YES
	Best commercial practice for IT development
	PSS.ITDevelopment

	PG - 32
	The system must provide a Life-Cycle Support discipline and control in the processes of refining the SWIM System during development and maintenance in addition to CM, to model development and maintenance procedures contributing to the overall quality and security of the SWIM System.
	NAS PP TEMP
	Confidentiality Integrity

Availability

Authenticity

Accountability
	YES
	Life-cycle support
	PSS.LifeCycleSupport

	PG – 33
	The system must establish Flaw Remediation procedures for tracking and correcting discovered security-related flaws.
	NAS PP TEMP
	Confidentiality Integrity

Availability

Authenticity

Accountability
	YES
	Flaw remediation
	PSS.FlwRem

	PG – 34
	The system must employ Security Testing to establish that the SWIM System Security Policy Enforcement Function exhibits the properties necessary to satisfy the functional specifications.
	NAS PP TEMP
	Confidentiality Integrity

Availability

Authenticity

Accountability
	YES
	Security testing
	PSS.SecTest

	PG – 35
	The system must employ penetration tests to discover vulnerabilities that might be introduced in the development or operation of the SWIM System.
	NAS PP TEMP
	Confidentiality Integrity

Availability

Authenticity

Accountability
	YES
	Penetration testing
	PSS.PentTest

	PG – 36
	System security must be based on a Vulnerability Assessment that addresses the vulnerability of the SWIM System to misuse or contain incorrect configuration.
	NAS PP TEMP
	Confidentiality Integrity

Availability

Authenticity

Accountability
	YES
	Vulnerability assessment
	PSS.VulnAssess

	PG – 37
	The SWIM System must be used only for authorized purposes.
	NAS PP TEMP
	Accountability, Availability
	YES
	Authorized purpose use
	PSS.AuthUse

	PG – 39
	The system shall develop and identify policies and procedures for system-wide compliance monitoring.
	ISSA-M7
	Confidentiality Integrity

Availability

Authenticity

Accountability
	YES
	Compliance monitoring
	PSS.CompMonit

	PG – 41
	The system shall make use of available information security news-lists, publications, bug fix alerts, CERT advisories, etc., as a recurring set of activities.
	ISSA-M8
	Confidentiality Integrity

Availability

Authenticity

Accountability
	YES
	Security update activities
	PSS.UpdActivity

C.3 Security Technologies for Specific Information Dimension

Table C- 7: STA per Information Dimension

	
	Confidentiality
	Integrity
	Availability
	Authenticity

	Information System
	· Link encryption

· VPN

· Firewall

· Network Access Controller

· Access Control Management System

· Virus Detection System
	· Link encryption

· VPN

· Firewall

· Network Access Controller

· Access Control Management System

· Virus Detection System
	· Routing Table Authentication

· Firewall

· Network Access Controller

· Virus Detection System

· Security Monitoring

· Vulnerability Assessment Software

·
	· Link encryption

· VPN

· Routing Table Authentication

· Firewall

· Network Access Controller

· Password Service

· PKI

· Authentication System

	Information Domain
	· Link encryption

· VPN

· Firewall

· Network Access Controller

· Encryption System

· Access Control Management System

· Virus Detection System

·
	· Link encryption

· VPN

· Firewall

· Network Access Controller

· Encryption System

· Access Control Management System

· Virus Detection System
	· Routing Table Authentication

· Firewall

· Network Access Controller

· Authentication System

· Virus Detection System

· Security Monitoring

· Vulnerability Assessment Software
	· Link encryption

· VPN

· Firewall

· Network Access Controller

· Encryption System

· Routing Table Authentication

· Password Service

· Authentication System

	Information Content
	· Link encryption

· Encryption System

· VPN

· Digital Signature

· Access Control Management System

· Virus Detection System
	· Link encryption

· Encryption System

· VPN

· Digital Signature

· Content Scanning System

· Access Control Management System

· Virus Detection System
	· Virus Detection Software

· Firewall

· Security Monitoring

· Vulnerability Assessment Software
	· Link encryption

· Encryption System

· VPN

· Digital Signature

· Password Service

· Firewall

· PKI

Table C- 8: Information Security Summary

	
	Information Content
	Information Domain
	Information System
	Zones

	
	
	
	
	1
	2
	3

	Access Control Management System
	Confidentiality

Integrity
	Confidentiality Integrity

	Confidentiality Integrity

	X
	X
	X

	Authentication System
	
	Authenticity

Availability
	Authenticity

Availability
	
	X
	X

	Digital Signature
	Confidentiality Integrity

Authenticity

Non-Repudiation
	
	
	X
	
	

	Encryption System
	Confidentiality Integrity

Authenticity
	Confidentiality Integrity

Authenticity
	
	X
	
	

	Firewall System
	Confidentiality Integrity

Availability

Authenticity
	Confidentiality Integrity

Availability

Authenticity
	Confidentiality Integrity

Availability

Authenticity
	
	X
	X

	Intrusion Detection System
	
	
	
	X
	X
	X

	Link Encryption
	Confidentiality Integrity

Authenticity
	Confidentiality Integrity

Authenticity
	Confidentiality Integrity

Authenticity
	
	
	X

	Network Access Controller
	
	Confidentiality Integrity

Availability

Authenticity
	Confidentiality Integrity

Availability

Authenticity
	
	X
	

	Password Service
	Authenticity
	Authenticity
	Authenticity
	X
	X
	X

	Public Key Infrastructure (PKI) System
	Authentication

Non-repudiation
	Authentication

Non-repudiation
	Authenticity
	X
	X
	X

	Routing Table Authentication
	
	Availability

Authenticity

	Availability

Authenticity

	
	X
	X

	Security Monitoring
	Availability
	Availability
	Availability
	X
	X
	X

	Virtual Private Network (VPN)
	Confidentiality Integrity

Authenticity
	Confidentiality Integrity

Authenticity
	Confidentiality Integrity

Authenticity
	X
	X
	X

	Virus Detection System
	Confidentiality Integrity

Availability
	Confidentiality Integrity

Availability
	Confidentiality Integrity

Availability
	X
	X
	X

	Vulnerability Assessment Software
	Availability
	Availability
	Availability
	X
	X
	X

Table C- 9: Security Technologies – What, When, and How

	What
	When
	How

	Access Control Management System

· The process of allowing only authorized individuals or agents to access the system

· An access control management system involves specifying and enforcing types or levels of access authorized for each user
	We need it when we want:

· To protect information system and its resources from unauthorized access either from the external or internal environment.

	· These access control systems are defined to varying degrees in terms determined by the security manager, the system manager, the user, the specific situation or context, or the system itself through previously determined guidelines of the overall system.

· Such systems can be based on mandatory access control (MAC), role-based access control (RBAC), discretionary access control (DAC), user-based access control (UBAC), policy-based access control (PBAC), also known as rule set-based access control (RSBAC) systems, content-dependent access control (CDAC), context-based access control (CBAC) and view-based access control (VBAC).

	Authentication System
	
	·

	Encryption System

· Encryption of data stored on a workstation, database, or server.
	We need it when we want:

· To provide protection against unauthorized access or disclosure from attempts originating locally or from external environment.
	· Available in software or software/hardware-based encryption products

· These products could be configured to encrypt either on command or automatically on file open or close.

	Digital Signature

· A means to bind information to an entity
	We need it when we want:

· To verify that the sender is who he/she claims to be.

· To verify that message has come from claimed sender.

· To timestamp documents to testify that the document existed at the stated time.
	· Digital signature is a block of data, called message digest, that is created using some secret key, and there is a public key that can be used to verify that the signature was really generated using the corresponding private key.

· Establishment of a certificate authority, in the centralized key infrastructure, that has its own key pair.

	Firewalls:

· A firewall is a checkpoint between a private network and one or more public networks.

· It is a gateway that selectively decides what information traffic may enter or leave a private network based on pre-defined screening criteria.

	We need it when we want:

· To control access: Deny access to unauthorized users, data packets, applications, etc. (Access Control List)

· To protect the network from network attacks, like Denial of Service (DoS) attacks.

· To provide alarm capabilities to the network incase a threat is sensed, like failed login or unauthenticated data packets/applications are trying to enter or leave the network. (Log files)

· To isolate intranet data from extranet or Internet data. (DMZ)

· To hide internal IP addressing scheme so that private IP addresses can be deployed in the internal network. (NAT)

	· These can be hardware or software solutions that enforce access control between two or more networks or systems.

· Firewalls are mainly placed at the network perimeters, within physically secured environment.

· Firewalls could be distinguished on the basis of their pre-defined screening criteria as:

· Packet Filtering firewall

· Application level firewall

· Stateful Inspection firewall

· Dynamic Packet Filtering firewall

· Kernel Proxy

· There are four types of firewall architectures that firewalls could be configured in:

· Packet-Filtering routers

· Screened-Host firewall system

· Dual-Homed Host firewall

· Screened-Subnet firewall

	Intrusion Detection System (IDS)

· System that scans network traffic and/or system data for potential computer-based attacks on protected resources.
	We need it when we want:

· To detect unauthorized activity (intrusions) throughout a network (including both, external or internal).

· To react to a situation by providing alarm capabilities incase a threat is sensed.

· Capability to severe access to the network resources once threat (attack) is detected.
	· IDS basically monitors network traffic or host audit logs to determine if any security policy have been violated by implementing

· Network based IDS, which scan real time network traffic

· Host IDS, which analyzes single computer data for anomalous or unauthorized activity.

· IDS detects the unauthorized activity through 2 mechanisms:

· Signature based ID or knowledge based ID where signatures or attributes are stored for reference.

· Statistical anomaly based ID or behavior based ID where a normal usage profile for the monitored network or host is defined.

· Response to an attack comes from issuing an alarm when suspected attackers are discovered.

	Link Encryption

· Link encryption (sometimes called link level or link layer encryption) is the data security process of encrypting information at the data link level as it is transmitted between two points within a network.
	We need it when we want:

· To secure the transmission line
	· Data, which is plaintext in the host server, is encrypted when it leaves the host, decrypted at the next link (which may be a host or a relay point), and then re-encrypted before it continues to the next link. Each link may use a different key or even a different algorithm for data encryption. The process is repeated until the data has reached the recipient.

	Network Access Controller

· A system that provides basic level of access control based on site’s local security policy
	We need it when we want to:

· To control access over incoming network connections and also inter-LAN segments.
	· NAC is implemented using filtering routers that has the capability to restrict access based on address or service type, like HTTP, SMTP email, etc.

	Password Service

· Password is basically a string of numbers provided to a system, at log-on time, to authenticate or verify that the user’s claimed identity is valid.
	We need it when we want to:

· To protect access to the network and its resources from unauthorized users (internal or external to the network)
	· Passwords could either be static passwords, that are same for each log on, or dynamic password, which provides the maximum security as a new password is required for each log-on.

· Static or dynamic passwords could be created from the use of tokens, which are in the form of credit-size smart cards or calculators. There are four types of tokens:

· Static password tokens

· Synchronous dynamic password tokens

· Asynchronous dynamic password tokens

· Challenge-response tokens

	Public Key Infrastructure (PKI)

· A PKI is a collection of components that support the generation and distribution of digital certificates, issuance of Certificate Revocation Lists (CRLs), and the building and running of directories to serve these certificates and CRLs.
	We need it when we want:

· To authenticate users/systems.

· To exchange change keys, used for encrypting and decrypting data, between trusted parties.

· To make the public keys, of the data recipient, available to the senders.

· To protect impersonators publishing public keys under false identity.

· To protect confidential transaction.

	· Depending on the needs and applications used, these components can be managed by FAA or by a trusted third part.

· Full-fledged PKIs consist of several components including a certificate authority (CA), registration authority (RA) and multiple technical and operational components (such as certificate databases and revocation lists).

	Routing Table Authentication

· It is technology to protect the routing table updates from being compromised.
	We need it when we want:

· To protect the network from Denial of Service (DoS) type of attack, where availability of the network and its resources it lost to its legitimate users.

· To prevent from network intrusions.
	· Routers that feature cryptographic authentication of updates for selected routing protocols.

· Example, the routing protocols, such as OSPF and BGP, may use MD-5 or SHA-1 hash algorithms to provide cryptographic authentication.

	Security Monitoring

	We need it when we want:

· To protect our network from unauthorized intrusions.

· Capability of reacting to the alarms generated in case of any threats sensed.

	· Systems for performing monitoring and management services are available in both software and services model.

· Manage policy and configuration settings on distributed security devices.

· Others pull alert data from remote devices into a central database, where the information is correlated and analyzed.

	Virtual Private Network (VPN)

· VPNs are private networks that use public infrastructure, such as internet, for secure and private communications.

· VPN allows the system to function over public networks essentially through a private tunnel using the secure Internet Engineering Task Force (IETF) IPSec standards and guidelines to provide authentication, integrity and encryption of data.
	We need it when we want:

· To extend the reach of data or applications to external users, like partners, or internet users, like remote user logging in to the internal network via Internet.

· To have a cost effective way of securing communications between two sites/facilities connected via IP network.

· To have the confidentiality and integrity of data intact while in transit.

· To have the data origin authentication, Non-Repudiation, replay security, and key management services.

· To have the capability to accommodate future technologies.

	· VPN security is achieved by using VPN software applications or VPN hardware devices, called concentrators.

· VPN create an encrypted tunnel between two endpoints – for example, between gateway servers located in two or more regional control centers or between a gateway server and a remote computer or a terminal running VPN client.

· IPSec based VPN solution with

· Authentication Header (AH)

· Encapsulating Security Payload (ESP)

· Internet Key Exchage

· Layer 2 based VPN solution

· Layer 2 Forwarding

· Layer 2 Tunnel Protocol

· Non-IPSec Network Layer based VPN solution

· Network Address Translation (NAT)

· Packet filtering

· Non-IPSec application layer based VPN solution

· SOCKS

· Secure Socket Layer

· Secure HTTP (S-HTTP)

	Virus Detection System

· Software that scans a computer’s memory and disk drives for the presence of viruses, known by their “signatures.”

· Proactive software that is used when a virus is active to limit the behavior or access of the executable code.
	We need it when we want:

· To detect any malicious content in the form of virus, worm, Trojan, known or unknown, that has the capability of either compromising the confidentiality, integrity or availability of data and information systems.
	· Virus detection system comes in two flavors: anti-virus and behavior-based.

· Behavior based systems implement policies, such as for mobile code, to protect IT resources. Because behavior-based systems are not signature-based, they do not require on-going signature updates, and they provide protection in the time gap between new viruses and signature updates.

· These systems try to identify malicious scripts, applets and executables, particularly web content such as ActiveX, VBScript, Java and JavaScript.

· Search for the code strings of non-reproducing malware, such as Trojan horses, password cracking systems, etc.

· Could be employed at zone 1, zone 2, or at zone 3, but due to VPN or application layer encryption full virus detection may not be possible at zones 2 and 3.

	Vulnerability Assessment Software

	We need it when we want:

· To detect any weakness in the system and in its resources.

· To limit access to the authorized entities only.

· To prevent network and its resources from attacks, like Denial of Service (DoS) attack.

	· Scans networks, servers and applications for security bugs, holes, and other weaknesses that could be exploited to gain unauthorized access to proprietary data or launch attacks on other systems.

· Some VA scanners examine systems and networks for known vulnerabilities based on a database of signatures, others checks to see if systems are compliant with FAA’s security policies governing configuration and program settings.

C.4 Security Objectives

The Table C-10 also shows the security phases that the stated objectives satisfy.
Table C- 10: SWIM Application Security Objectives

	Security Objective Name
	Objectives
	Protect/Detect/

Correct

	Application Programs

	OWA.AppDesignSec
	Security Design Reviews.
	P, D, C

	OWA.AppDevSec
	Security Development Reviews.
	P, D, C

	OWA.AppTestSec
	Security Tests to identify & Close vulnerabilities.
	P, D

	OWA.ConfigMgmt
	Implement configuration management to assure storage integrity, identification of system connectivity, and identification of system components (software, hardware, and firmware).
	P, D

	OWA.AppInstallSec
	Security Document to ensure proper install.
	P, D

	OWA.AppAvail
	The application is monitored to determine availability in the 24 hours a day x 7 days a week.
	D

	OWA.AppIntegrity

	The programs will implement controls for program and stored application data.
	P, C

	OWA.AppFailureAlerts
	Operator Alerts will be provided should any of the applications identify a process failure.
	D

	OSA.AppAudit
	The application programs will support a protected audit capability.
	P

	OSA.AppAccessControl
	The application will be protected from unauthorized user or process access.
	P

	

	Client-Server

	OSA.CSAuthentic
	All sessions between the user stations and the server program will be authenticated.
	P, D

	OSA.CSAvail
	The C-S Program is monitored to determine availability in the 24 hours a day x 7 days a week
	D

	OSA.CSIntegrity
	The Client-Server Interface will implement controls for program and data integrity.
	P, C

	OSA.CSAudit
	The C-S interface will support a protected audit capability.
	D

	OSA.CSAccessCont
	The C-S will not allow unauthorized connections.
	D, P

	

	Graphical User Interface (GUI) Program

	OSA.GTrust
	All paths between the GUI program and the application Main Program will be trusted.
	P

	OSA.GAvail
	The GUI is monitored to determine application availability on 24x7 scale
	D

	OSA.GIntegrity
	The GUI will implement controls for program and data integrity, as well as for integrity controls on User requests.
	P, C

	OSA.GAudit
	The GUI interface will support a protected audit capability.
	D

	OSA.GUserGuide
	Provide documentation for the general application-user.
	P

	OSA.GAccessCont
	Terminal workstations are authenticated to the applications installed.
	P

Table C-11 shows the objectives for SWIM’s operational environment.

Table C- 11: SWIM System Objectives (Operational Environment)
	Security Objectives Name
	Objectives
	Protect/Detect/Correct

	Personnel

	OSS.PerMonitor
	Operators are required to monitor the SWIM ‘systems’ to detect, assess and correct impacts to SWIM operations.
	P, D, C

	OSS.PerNetMonitor
	Operators are required to monitor the SWIM ‘network’ to detect, assess and correct impacts to SWIM operations.
	P, D, C

	

	Hardware

	OSS.HWHighAvail
	The HW should be optimized to avoid single points of failure.
	P

	OSS.HWAssurance
	Ensure that security-relevant hardware, software and firmware are correctly functioning through features and procedures.
	P

	OSS.HWServerAvail
	The server(s) are monitored to track any down-time. Failure or maintenance events on average should be less than some SWIM stipulated time-period.
	D

	

	Software

	OSS.SWUserAuth
	Uniquely identify and authenticate each user of the system.
	P

	OSS.SWID&Auth
	Provide the basic I&A functions that will support user accountability.
	P

	OSS.SWIntegrity
	Provide appropriate integrity protection for stored system data.
	P

	OSS.SWLimUseAuth
	Restrict the actions a user may perform before verifying the identity of the user.
	P

	OSS.SWPriorityService
	Control access to resources so that lower-priority activities do not unduly interfere with or delay higher-priority activities.
	P

	OSS.SWResourceQuota
	Use resource quotas to limit user and service use of system resources to a level that will prevent degradation or denial of service to other critical users and services.
	P

	OSS.SWSecurityRoles
	Maintain security-relevant roles and the association of users with those roles.
	P

	OSS.SWAccessBanner
	Inform the user of the possibility of the system monitoring his actions, and that misuse of the system may result job-loss
	P

	OSS.SWUnusualAcitivities
	Identify unusual user activity on the system.
	D

	OSS.SWUserGuide
	Provide documentation for the System User.
	P

	OSS.SWAdminGuide
	Deter administrator errors by providing adequate administrator guidance.
	P

	OSS.SWConfigMgmt
	Implement a configuration management plan to assure storage integrity, identification of system connectivity (software, hardware, and firmware), and identification of system components (software, hardware, and firmware).
	P

	OSS.SWAudit
	Users will be audited for accountability.
	P, D

	OSS.SWAuditLoss
	Respond to possible loss of audit records when audit trail storage is full or nearly full.
	P

	OSS.SWAuditProtect
	Protect audit records against unauthorized access, modification, or deletion to ensure accountability of user actions.
	P, D

	OSS.SWAuditRecords
	Record in audit records: date and time of action, location of the action, and the entity responsible for the action.
	P, D, C

	OSS.SWAuditUserAccountable
	Provide individual accountability for audited events. Uniquely identify each user so that auditable actions can be traced to a user.
	P, C

	OSS.SWMaliciousCode
	Incorporate malicious code prevention procedures and mechanisms.
	P

	OSS.SWTrustRecoveryDoc
	Provide trusted recovery to ensure that data cannot be lost or misplaced.
	P

	OSS.SWBackup
	Provide backup procedures to ensure that the system can be reconstructed.
	P

	OSS.SWBackupRestore
	Provide through frequent backups, restoration of security-relevant changes to the system between backup and restore, and restoration of the security-relevant system state (e.g. access control list) without destruction of other system data.
	P

	OSS.SWBackupStorage
	Provide sufficient backup storage and effective restoration to ensure that the system can be recreated.
	P

	

	Communications

	OSS.CommComPorts
	Any unused communications software or commonly assigned ports should be disabled and/or the common ports re-assigned.
	P

	OSS.CommDataTransfer
	Provide the ability to have physically protected communications lines and intrusion detection for communications lines.
	P, D, C

	OSS.CommConfigMgmt
	Implement a configuration management plan to assure storage integrity, identification of system components (software, hardware, and firmware).
	P

	OSS.CommUserDataTransfer
	Provide the ability to have physically protected communications lines, intrusion detection for communications lines, and/or need-to-know isolation for communications lines.
	P

Appendix D. NAS Sensors and Systems

To define SWIM interfaces and associated performance requirements, an understanding of the legacy NAS sensors and systems that are candidate SWIM members is required. An initial effort to capture the SWIM information supplier and consumer NAS systems was conducted as part of CNS-ATM Task 15. This task defined an information source/sink model for SWIM. As part of this study, this information has been reviewed and used to develop a comprehensive list of all sensors and systems both internal and external to NAS that are candidate SWIM members. This information is documented in Tables D-1 through D-5 below.

Information in these tables is categorized into five domains. These include Surveillance, Weather, Aeronautical, Resource Management and Flight Information. The data included in the tables has been derived from previous CNS-ATM task reports (Task 12 & Task 15) and from the list of sources identified below:

· NAS Wide Information Services Concept of Use, Federal Aviation Administration, Draft Version dated May 17, 2002.

· National Airspace System Concept of Operations, RTCA Select Committee for Free Flight, December 2000.

· NAS-Wide Information Services (NWIS) Architecture Development: Identification of Information Services, ITT Industries, AES, CNS-ATM Task 15B, August 26 2002

· NAS (National Airspace System) Interfacility Communication System (NICS) Architecture Document Version 1.3, Federal Aviation Administration, ASD-140, April 2002

· National Airspace System Architecture, Version 4.0, US Department of Transportation, Federal Aviation Administration, January 1999.

· Current FAA Telecommunications System and Facility Description Manual, Currant Book; Fiscal Year 2001 Edition, NAS Operations (AOP) Telecommunications Support and International Communications Division.

· Future FAA Telecommunications Plan, “Fuschia Book”, NAS Operations (AOP) Telecommunications Network Planning and Engineering Division, April 2002.

· National Airspace System, System Requirements Specification, NAS-SR-1000 Changes 1-14 (December 1995), US Department of Transportation, Federal Aviation Administration.

· National Airspace System, Functional and Performance Requirements for the National Airspace System, NAS-SS-1000, US Department of Transportation, Federal Aviation Administration, April 1995.

· Future NAS Communications Architecture Validation, ITT Industries, AES, CNS-ATM Task 2, TR01084, December 2001.

· The N2 data flow charts provided by Mike McVeigh, FAA ASD-120

Table D- 1: Surveillance Sensors/Systems

	Automation/ Processing System (SINK)
	Sensors feeding into System (SOURCE)
	Traffic Model
	Traffic type
	Data Attributes

	ARTS
	ASR-7,8,9; ASR-11; ATCBI; MODE-S
	Surv-1
	Surv: 128 bits
	Surv: Custom Model

Peak Loading: peak rate = 544 msgs/sec & avg rate = 70 msgs/sec

Busy Loading: peak rate = 544 msgs/sec & avg. rate = 35 msgs/sec

	STARS
	ASR-7,8,9; ASR-11; ATCBI; MODE-S
	Surv-1; Surv-3
	Product Error Msg.: 112 bits

Runway Config.: 192 bits
	Uniform (constant)

Product Error Msg.: 1 msg./min

Runway Config.: 5 msgs/hr

	HCS (w/PAMRI)
	ASR-7,8,9; ASR-11; ATCBI; MODE-S
	Surv-1; Surv-3
	Product Error Msg.: 112 bits

Runway Config.: 192 bits
	Uniform (constant)

Product Error Msg.: 1 msg./min

Runway Config.: 5 msgs/hr

	DARC
	ASR-7,8,9; ASR-11; ATCBI; MODE-S
	Surv-1; Surv-3
	Product Error Msg.: 112 bits

Runway Config.: 192 bits
	Uniform (constant)

Product Error Msg.: 1 msg./min

Runway Config.: 5 msgs/hr

	AMASS
	ASDE-3; ASR-7,8,9; ASR-11;
	Surv-1
	Surv: 128 bits
	Surv: Custom Model

Peak Loading: peak rate = 544 msgs/sec & avg rate = 70 msgs/sec

Busy Loading: peak rate = 544 msgs/sec & avg. rate = 35 msgs/sec

	DBRITE TDU
	DBRITE
	Surv-7 (Aut-4)
	DBRITE Display (data message): 704 bits

VCU Data: 480 bits
	DBRITE Display: Uniform (constant)

VCU Data: Negative Binomial

DBRITE Display (data message): 10/sec

VCU Data:

Peak: 2413 msgs/sec

Avg: 1073 msgs/sec

	STARS TDW
	STARS
	Surv-7 (Aut-4)
	DBRITE Display (data message): 704 bits

VCU Data: 480 bits
	DBRITE Display: Uniform (constant)

VCU Data: Negative Binomial

DBRITE Display (data message): 10/sec

VCU Data:

Peak: 2413 msgs/sec

Avg: 1073 msgs/sec

	ASR-7,8,9
	HCS, STARS, ARTS
	Surv-9 (Surv-3)
	Product Error Msg.: 112 bits

Runway Config.: 192 bits
	Uniform (constant)

Product Error Msg.: 1 msg./min

Runway Config.: 5 msgs/hr

	ASR-11
	HCS, STARS, ARTS
	Surv-9 (Surv-3)
	Product Error Msg.: 112 bits

Runway Config.: 192 bits
	Uniform (constant)

Product Error Msg.: 1 msg./min

Runway Config.: 5 msgs/hr

	ARSR
	HCS, STARS, ARTS
	Surv-9 (Surv-3)
	Product Error Msg.: 112 bits

Runway Config.: 192 bits
	Uniform (constant)

Product Error Msg.: 1 msg./min

Runway Config.: 5 msgs/hr

Table D- 2: Weather Sensors/Systems

	Automation/ Processing System (SINK)
	Sensors feeding into System (SOURCE)
	Traffic Model
	Traffic Type
	Data Attributes

	NEXRAD Principal User processor
	NWXRAD WSR- 88D
	Wx-2
	Lightening Detection Data: 152 bits
	Uniform (constant)

Lightening Detection Data: 1/min

	NEXRAD WSR-88D
	WARP Processor at ARTCC
	Wx-2
	Lightening Detection Data: 152 bits
	Uniform (constant)

Lightening Detection Data: 1/min

	DSR
	WARP Processor at ARTCC
	Wx-10
	Weather: 64 bits
	Weather: Negative Binomial

Weather:

Peak: 75 msgs/sec

Busy (avg.): 15 msgs/sec

	URET CCLD
	WARP Processor at ARTCC
	Wx-10
	Weather: 64 bits
	Weather: Negative Binomial

Weather:

Peak: 75 msgs/sec

Busy (avg.): 15 msgs/sec

	CTAS /TMA
	WARP Processor at ARTCC
	Wx-10
	Weather: 64 bits
	Weather: Negative Binomial

Weather:

Peak: 75 msgs/sec

Busy (avg.): 15 msgs/sec

	CTAS WS
	WJHTC (to be replaced by WARP)
	Wx-10
	Weather: 64 bits
	Weather: Negative Binomial

Weather:

Peak: 75 msgs/sec

Busy (avg.): 15 msgs/sec

	AIS remote
	AIS WS
	Wx-10
	Weather: 64 bits
	Weather: Negative Binomial

Weather:

Peak: 75 msgs/sec

Busy (avg.): 15 msgs/sec

	AIS WS
	AIS remote
	Wx-10
	Weather: 64 bits
	Weather: Negative Binomial

Weather:

Peak: 75 msgs/sec

Busy (avg.): 15 msgs/sec

	ASOS
	ADAS
	Wx-10
	Weather: 64 bits
	Weather: Negative Binomial

Weather:

Peak: 75 msgs/sec

Busy (avg.): 15 msgs/sec

	US Customs
	WARP Processor at ARTCC
	Wx-10
	Weather: 64 bits
	Weather: Negative Binomial

Weather:

Peak: 75 msgs/sec

Busy (avg.): 15 msgs/sec

	HOST
	ARINC/AFTN; AWP; ARSR; ASR-7,8,9; ASR-11
	Wx-2
	Lightening Detection Data: 152 bits
	Uniform (constant)

Lightening Detection Data: 1/min

	STARS/ARTS
	ARSR; ASR-7,8,9; ASR-11
	Wx-2
	Lightening Detection Data: 152 bits
	Uniform (constant)

Lightening Detection Data: 1/min

	WMSCR
	ARINC/AFTN; ADAS; AFSS FSDPS;
	Wx-1, Wx-2
	
	

	ETMS WS & SD
	ETMCC (Volpe)
	Wx-10
	Weather: 64 bits
	Weather: Negative Binomial

Weather:

Peak: 75 msgs/sec

Busy (avg.): 15 msgs/sec

	DOTS+
	Kovouras; ETMCC (Volpe)
	Wx-2
	Lightening Detection Data: 152 bits
	Uniform (constant)

Lightening Detection Data: 1/min

	AFTN/FIRs
	
	Wx-10
	Weather: 64 bits
	Weather: Negative Binomial

Weather:

Peak: 75 msgs/sec

Busy (avg.): 15 msgs/sec

	S1R/ODAPS
	
	Wx-2, Wx-10
	
	

	ODAPS
	WMSCR
	Wx-2, Wx-10
	
	

	ITWS
	
	Wx-1, Wx-10
	
	

	WARP FAABWTG (at ATCSCC)
	
	Wx-10
	Weather: 64 bits
	Weather: Negative Binomial

Weather:

Peak: 75 msgs/sec

Busy (avg.): 15 msgs/sec

	WARP Processor (at ARTCC)
	
	Wx-1, Wx-10
	
	

	ADAS
	
	Wx-1
	Current surface wx obs: 1600 bits

Hourly surface wx obs: 1600 bits

Special surface wx obs: 1600
	Uniform (constant)

Current surface wx obs: 1/min

Hourly surface wx obs: 137/hr

Special surface wx obs: 10/hr

	ARINC/SITA ODL Server
	
	Wx-10
	Weather: 64 bits
	Weather: Negative Binomial

Weather:

Peak: 75 msgs/sec

Busy (avg.): 15 msgs/sec

	ARINC Data Network
	
	Wx-10
	Weather: 64 bits
	Weather: Negative Binomial

Weather:

Peak: 75 msgs/sec

Busy (avg.): 15 msgs/sec

	ATCT GSD
	
	Wx-2
	Lightening Detection Data: 152 bits
	Uniform (constant)

Lightening Detection Data: 1/min

	TDWR
	
	Wx-10
	Weather: 64 bits
	Weather: Negative Binomial

Weather:

Peak: 75 msgs/sec

Busy (avg.): 15 msgs/sec

	ATCT NEXRAD IDS
	
	Wx-5
	LLWAS Winds: 800 bits

LLWAS Threshold Winds: 2400 bits
	Uniform (constant)

LLWAS Winds: 6/minute

LLWAS Threshold Winds: 6/minute

	ATCT ACE Control Cabinet
	
	Wx-2, Wx-5
	
	

	Kavouris Receiver
	
	Wx-4, Wx-5
	
	

	AFSS M1FC
	ARTCC FSDPS
	Wx-4, Wx-5
	
	

	FDP2000
	ARTCC FSDPS
	Wx-4, Wx-5
	
	

Table D- 3: Flight Management Sensors/Systems

	Automation/ Processing System (SINK)
	Sensors feeding into System (SOURCE)
	Traffic Model
	Traffic Type
	Data Attributes

	ETMS (ARTCC)
	ETMCC, HOST
	N/A
	
	

	ETMCC (Volpe)
	ETMS
	Traffic management computer to ARTS/HCS
	
	

	CTAS/TMA
	HOST
	N/A
	
	

	pFAST
	CTAS/TMA
	N/A
	
	

	HOST/DSR
	CTAS/TMA, URET. CP DLC, ODAPS, OASIS, ARINC/AFTN, HOST, ARTS/STARS
	HCS to ARTS; ARTS/HCS to Traffic management computer
	
	

	URET CCLD (Conflict Probe)
	URET, HOST
	N/A
	
	

	AIS WS
	AIS Remote
	AIS database download
	
	

	FDIO Remote Control Unit
	HOST
	Flight Data Input,

Flight Data Output
	
	

	Host (via FDSPS)
	HOST, DUAT/AFSS, FSDPS, MBO
	Aut-2
	Flight Data Acknowledgement: 264 bits

ALNOT and IREQ Cancellations: 328 bits

Flight Plan Closure: 400 bits

ICAO Departure: 520 bits

ALNOT and INREQ Responses: 928 bits

Flight Notification: 1128 bits

Flight Plan Disapprove: 2000 bits

ICAO Filed Flight Plan: 2304 bits

ALNOT and INREQ: 6696 bits

Automatic Alert Message: 80 bits

ICAO Aerodrome and Radar Messages: 720 bits

General Flight Service : 800 bits

ICAO Synopses and Aircraft Reports: 720 bits

General Information and Center Weather Advisory: 1600 bits

ICAO Terminal Forecast: 1600 bits

ICAO Route and Area Forecasts: 1600 bits

ICAO Tabular Winds Forecast: 2160 bits

ICAO Weather Warning/Advisories: 2400 bits
	Uniform (constant)

Flight Data Acknowledgement: 1/hr

ALNOT and IREQ Cancellations: 4/hr

Flight Plan Closure: 129/hr

ICAO Departure: 5/hr

ALNOT and INREQ Responses: 3/hr

Flight Notification: 129/hr

Flight Plan Disapprove: 194/hr

ICAO Filed Flight Plan: 15/hr

ALNOT and INREQ: 5/hr

Automatic Alert Message: 100/hr

ICAO Aerodrome and Radar Messages: 84/hr

General Flight Service : 2/hr

ICAO Synopses and Aircraft Reports: 71/day

General Information and Center Weather Advisory: 138/day

ICAO Terminal Forecast: 280/day

ICAO Route and Area Forecasts: 4/day

ICAO Tabular Winds Forecast: 28/day

ICAO Weather Warning/Advisories: 2/day

	WMSCR
	ARINC/AFTN
	
	
	

	US Customs
	ARTCC
	
	
	

	Oceanic S1R/TP Server
	HOST
	
	
	

	NORAD TTY
	ODAPS
	
	
	

	ODAPS
	OFDPS
	Flight Data Input
	
	

	FDP 2000
	ARINC/SITA, DUAT/AFSS FSDPS
	Flight Data Input, AUT-6
	Law Enforcement Alert Cancellation: 824 bits

Law Enforcement Alert: 1920 bits

Law Enforcement Supplemental Alert: 2384 bits

Military Operations Message: 480 bits

NOTAMS: 280 bits

PIREPS: 720 bits

Weather Information Requests: 800 bits
	Uniform (constant)

Law Enforcement Alert Cancellation: 1/hr

Law Enforcement Alert: 1/hr

Law Enforcement Supplemental Alert: 1/hr

Military Operations Message: 3/hr

NOTAMS: 5/hr

PIREPS: 11/hr

Weather Information Requests: 560/hr

	AIDCS
	ARINC/SITA
	
	
	

	DOTS+
	ARINC/SITA, ETMCC
	
	
	

	AWP
	Airlines
	Aut-3
	DOD Surface Observations: 720 bits

PIREPS, ICAO Radar Reports & ICAO Aerodrome Reports: 720 bits

Processed NOTAMS: 1040 bits

AWOS Hourly Surface Wx Observation: 1600 bits

NWS Amendments: 2700 bits

NWS SIGMETS and AIRMETS: 4800 bits

NWS Surface Observations: 39000 bits

DOD Terminal Forecasts: 640 bits

ICAO Aircraft Reports & Synopses: 720 bits

Center Weather Advisory: 800 bits

General Information & Meteorological Impact: 1600 bits

ICAO Terminal Area Forecasts: 1600 bits

ICAO Route and Area Forecasts: 1920 bits

ICAO Tabular Winds Forecast: 2160 bits

ICAO Weather Warning/Advisories: 2400 bits

NWS Hurricane/Tropical Storm Advisory: 6400 bits

NWS Area Forecasts: 9600 bits

NWS Severe Wx Outlook: 12000 bits

NWS Prognostic Map Discussion: 22400 bits

NWS Terminal Forecasts: 284000 bits

NWS Winds/Temperature Aloft Forecast: 460000 bits

Airport Reservation Data: 176 bits

AWOS Special Surface Wx Observations: 1600 bits

DOD Hazardous Weather Information: 26400 bits

General Flight Service Message: 800 bits

Law Enforcement Alert Cancellation: 720 bits

Law Enforcement Alert: 1840 bits

Law Enforcement Supplemental Alert: 2300 bits

Military Operations Message: 480 bits

NWS Weather Warnings and Advisories: 5600 bits

Traffic Management Advisories: 5000
	Uniform (constant)

DOD Surface Observations: 165/hr

PIREPS, ICAO Radar Reports & ICAO Aerodrome Reports: 514/hr

Processed NOTAMS: 165/hr

AWOS Hourly Surface Wx Observation: 905/hr

NWS Amendments: 107/hr

NWS SIGMETS and AIRMETS: 5/hr

NWS Surface Observations: 1/hr

DOD Terminal Forecasts: 660/day

ICAO Aircraft Reports & Synopses: 812/day

Center Weather Advisory: 69/day

General Information & Meteorological Impact: 138/day

ICAO Terminal Area Forecasts: 280/day

ICAO Route and Area Forecasts: 142/day

ICAO Tabular Winds Forecast: 28/day

ICAO Weather Warning/Advisories: 11/day

NWS Hurricane/Tropical Storm Advisory: 3/day

NWS Area Forecasts: 208/day

NWS Severe Wx Outlook: 3/day

NWS Prognostic Map Discussion: 4/day

NWS Terminal Forecasts: 4/day

NWS Winds/Temperature Aloft Forecast: 2/day

Airport Reservation Data: 1000/hr

AWOS Special Surface Wx Observations: 10/hr

DOD Hazardous Weather Information: 2/day

General Flight Service Message: 366/hr

Law Enforcement Alert Cancellation: 5/hr

Law Enforcement Alert: 5/hr

Law Enforcement Supplemental Alert: 5/hr

Military Operations Message: 65/hr

NWS Weather Warnings and Advisories: 1/hr

Traffic Management Advisories: 15/hr

	STARS display
	pFAST
	
	
	

	ARTS/STARS
	HOST
	ARTS to HCS
	
	

	TRACON EFSTS
	ATCT EFSTS
	N/A
	
	

	TRACON DSP
	ATCT DSP
	N/A
	
	

	ARINC/SITA
	ATCT TDLS (PDC)
	N/A
	
	

	ATCT TDLS (FDIO simulator)
	ARINC/SITA, FDIO
	N/A
	
	

	AMASS (TAIU)
	ARTS
	N/A
	
	

	DOTS+ (ATCSCC)
	DOTS (Oceanic)
	N/A
	
	

	AFSS M1FC Briefing Station
	FSDPS
	N/A
	
	

Table D- 4: Aeronautical Systems/Sensors

	Automation/ Processing System (SINK)
	Sensors feeding into System (SOURCE)
	Traffic Model
	Traffic type

	Data Attributes

	WMSCR
	CNS
	
	
	

	AWP
	WMSCR
	
	
	

	FSDPS
	AWP, CNS
	Aut-3
	DOD Surface Observations: 720 bits

PIREPS, ICAO Radar Reports & ICAO Aerodrome Reports: 720 bits

Processed NOTAMS: 1040 bits

AWOS Hourly Surface Wx Observation: 1600 bits

NWS Amendments: 2700 bits

NWS SIGMETS and AIRMETS: 4800 bits

NWS Surface Observations: 39000 bits

DOD Terminal Forecasts: 640 bits

ICAO Aircraft Reports & Synopses: 720 bits

Center Weather Advisory: 800 bits

General Information & Meteorological Impact: 1600 bits

ICAO Terminal Area Forecasts: 1600 bits

ICAO Route and Area Forecasts: 1920 bits

ICAO Tabular Winds Forecast: 2160 bits

ICAO Weather Warning/Advisories: 2400 bits

NWS Hurricane/Tropical Storm Advisory: 6400 bits

NWS Area Forecasts: 9600 bits

NWS Severe Wx Outlook: 12000 bits

NWS Prognostic Map Discussion: 22400 bits

NWS Terminal Forecasts: 284000 bits

NWS Winds/Temperature Aloft Forecast: 460000 bits

Airport Reservation Data: 176 bits

AWOS Special Surface Wx Observations: 1600 bits

DOD Hazardous Weather Information: 26400 bits

General Flight Service Message: 800 bits

Law Enforcement Alert Cancellation: 720 bits

Law Enforcement Alert: 1840 bits

Law Enforcement Supplemental Alert: 2300 bits

Military Operations Message: 480 bits

NWS Weather Warnings and Advisories: 5600 bits

Traffic Management Advisories: 5000
	Uniform (constant)

DOD Surface Observations: 165/hr

PIREPS, ICAO Radar Reports & ICAO Aerodrome Reports: 514/hr

Processed NOTAMS: 165/hr

AWOS Hourly Surface Wx Observation: 905/hr

NWS Amendments: 107/hr

NWS SIGMETS and AIRMETS: 5/hr

NWS Surface Observations: 1/hr

DOD Terminal Forecasts: 660/day

ICAO Aircraft Reports & Synopses: 812/day

Center Weather Advisory: 69/day

General Information & Meteorological Impact: 138/day

ICAO Terminal Area Forecasts: 280/day

ICAO Route and Area Forecasts: 142/day

ICAO Tabular Winds Forecast: 28/day

ICAO Weather Warning/Advisories: 11/day

NWS Hurricane/Tropical Storm Advisory: 3/day

NWS Area Forecasts: 208/day

NWS Severe Wx Outlook: 3/day

NWS Prognostic Map Discussion: 4/day

NWS Terminal Forecasts: 4/day

NWS Winds/Temperature Aloft Forecast: 2/day

Airport Reservation Data: 1000/hr

AWOS Special Surface Wx Observations: 10/hr

DOD Hazardous Weather Information: 2/day

General Flight Service Message: 366/hr

Law Enforcement Alert Cancellation: 5/hr

Law Enforcement Alert: 5/hr

Law Enforcement Supplemental Alert: 5/hr

Military Operations Message: 65/hr

NWS Weather Warnings and Advisories: 1/hr

Traffic Management Advisories: 15/hr

	M1FC
	FSDPS
	
	
	

	ISD4 or ACE/ISD
	NOTAM Distribution Client
	
	
	

	NOTAM Distribution Client (NAIMES WS)
	USNS Distribution Server
	
	
	

	SAMS Client
	SAMS Server
	
	
	

	SAMS Server
	SAMS Client
	
	
	

	ODAPS
	WMSCR
	
	
	

	USNS Distribution Server
	NOTAM Distribution Client
	
	
	

	Consolidated NOTAM System (CNS)
	FSDPS, OASIS
	
	
	

	ATCT/TRACON Phone /fax
	AFSS Phone/Fax
	
	
	

Table D- 5: Resource Management Systems/Sensors

	Automation/ Processing System (SINK)
	Sensors feeding into System (SOURCE)
	Traffic Model
	Traffic type

	Data Attributes

	RMS Module
	MPS
	RMS to MPS
	
	

	MPS
	RMS, MDT, MPS
	MPS to RMS

MPS to MPS
	
	

	NIMS Management Console
	RMVC
	
	
	

	Remote Monitoring VORTAC Concentrator
	NIMS Management Console
	
	
	

Appendix E. Terms and Concepts Used in the Report

Broker
The broker component of SWIM is a middleware software application (running on a server) whose role is to coordinate the exchange of information between the other logical SWIM components, the SWIM members, data marts and warehouses, the MDR and the IOR.

Common data model The SWIM Common Data Model is the set of data structures that are used to represent NAS information so that it is understandable by all SWIM members. Definition of these structures is an important part of the design process for SWIM.
Commercial-Off-The-Shelf (COTS) In this document the use of the term COTS also includes Government-Off-The-Shelf (GOTS), or GOTS, which describes systems developed for other government users. COTS systems and subsystems are preferred to those that are custom developed because their broader user base means they are usually cheaper and of high reliability due to their higher probability of user-exposure of latent flaws. However, as any user of Microsoft Windows knows, wide spread use does not guarantee error free service. Frequent version changes in commercial products also can create problems for systems which integrate various COTS subsystems.

Data mart and data warehouse A data mart is a repository of data gathered from operational data and other sources that is designed to serve a particular community of knowledge workers. A data warehouse is a central repository for all or significant parts of the data that an enterprise's various business systems collect. Data marts and data warehouses are components of the logical architecture of SWIM Information Management. The exact structures corresponding to these two terms have not yet been determined for SWIM. In general, a data warehouse provides a database or collection of databases with an enterprise wide scope whose data may range from highly detailed to broadly summarized and archival. On the other hand, the data in a data mart are more limited in scope, more rapidly retrieved, and on average less processed and of more recent origin. The SWIM design will provide data marts in situations where SWIM members require data delivery with lower latencies than the SWIM data warehouse(s) can provide. In practice, subscriptions will normally be served by data marts and queries by data warehouses.

Information object (IO) Observational data coming into a NAS facility from a single sensor over a telecommunications channel dedicated to its delivery needs no accompanying descriptive data other than an occasional sensor or channel status report for the facility to have all the information it needs to process that data because the relevant information about the sensor is known from its channel assignment. Heterogeneous networked data, however, must be accompanied by context information to be useable. In SWIM data is exchanged in IOs. An IO has two parts: 1) the data itself, or payload, and 2) information about the data , or metadata, which provides the necessary context, or attributes, of the data. At minimum the metadata identifies the nature of the IO, i.e., the schema used for structuring and formatting it. The two parts of the IO are not necessarily transmitted or stored together but remain logically linked. The following candidate SWIM IO subtypes contribute to efficient data distribution through their specially designed attributes that enable SWIM to provide alternative data sharing strategies:

· Publishing information object (PIO) One way a publisher can initiate the publishing of an IO is to send a broker, not the full IO, but a PIO for advertising what is to be published. The PIO corresponds to the IO but has been stripped of all or most of the IO’s payload. The publisher then sends the full IO to a data repository and the broker initiates the distribution of the IO to the proper subscribers based on the information in its corresponding PIO.

· Stream-data publishing information object (SPIO) Stream data, or “fast data”, is data that is updated rapidly over a relatively long period of time. SPIOs are a special case of PIOs for stream data and thus do not contain the payload of their corresponding stream data IOs.

Information object registry (IOR) The IOR is a component of SWIM’s logical architecture for Information Management. It provides a list or index of all NAS IOs that are searchable in SWIM, based on defined attributes in the Common Data Model and associated IO access information. An IOR is a system that contains the instances of information objects. Typically, it is a software application that uses a database to store and retrieve records.

Metadata registry (MDR The MDR is a component of SWIM’s logical architecture for Information Management. The SWIM MDR is not the same as the FAA Metadata Repository, although its development may be aided by integrating into it information already collected into the FAA MDR, and also by the standardization of FAA data elements in the FAA Data Registry. SWIM’s MDR will provide an index to the metadata schema in SWIM, or the “metadata about the metadata” in SWIM IOs.
Network Management Unit (NMU) The NMU is the generic term given to the logical component of SWIM that provides the SWIM functions of Security Management, Configuration Management, Performance Management, Accounting Management and Fault Management.
OPNET OPNET Technologies, Inc. of Bethesda, Maryland is a leading commercial provider of predictive software for telecommunication networks. During the execution of CNS-ATM Task 12 the OPNET Modeler, a network simulator, provided the framework for modeling the future NAS communication architecture and simulating its performance. Task 12 modeled the operations of a segment of the facilities attached to the Cleveland ARTCC in Oberlin, Ohio in detail and showed the performance of proposed and actual networks, devices, protocols and applications. In Task 17, an updated version of the OPNET Modeler version allowed inclusion of multicasting under Internet Protocol version 6 and the model was appropriately modified in order to reflect the SWIM environment. Simulations of proposed SWIM architecture choices will provide results of tradeoff studies of different design options. For more details on OPNET simulations, see the Task 12 Report.

Object request broker (ORB) ORB is a middleware technology that manages communication and data exchange between objects. ORBs enable system developers to build distributed systems by piecing together individual, independent units of software (objects) with an ORB that enables these objects to communicate with each other. This allows the developers to concern themselves with object interface details and not worry about the communication implementation details that are isolated within the ORB. The most mature and widely used ORB architecture, Common Object Request Broker Architecture (CORBA) is the Object Management Group’s (OMG's) open, vendor-independent architecture (that is, a standard set of specifications that computer applications conform to in order to work together over networks). Using the standard Internet Inner-ORB Protocol (IIOP) , “a CORBA-based program from any vendor, on almost any computer, operating system, programming language, and network, can interoperate with a CORBA-based program from the same or another vendor, on almost any other computer, operating system, programming language, and network.” (See http://www.omg.org/)

Ontology An ontology is a statement of the conceptual relationships among entities in a domain of interest.

Metadata Registry (MDR) An MDR is a system that contains information describing the format, structure and definitions of data (rather than holding actual ‘filled-out’ data).

Simple Network Management Protocol (SNMP) SNMP is a protocol described in Internet Engineering Task Force (IETF) Request for Comment (RFC) 1157 and other related RFCs. It is a mature and widely used standard that governs network management and the monitoring of network devices.

Stream-data Stream data are data, such as observations from sensors, that are updated with high frequency (generally for relatively long durations or indefinitely.) Stream data are produced at a rate of over one data packet a second.

SWIM member The term SWIM member is equivalent to the term “SWIM user/resource” in earlier Task 17 reports. A SWIM member is any authorized participant in the exchange of information via SWIM. It can be either a consumer or a provider of the shared NAS information and services and includes networked computers, NAS automation systems (e.g. Host Computer Systems and Decision Support Systems), network systems (FTI communication connections), and NAS users (e.g. pilots, air traffic controllers, traffic specialists), etc.
Taxonomy In the context of information technology, taxonomy is the terminology in the domain of interest and the way it is organized into categories and subcategories

EXtensible Markup Language (XML) methodology XML is a mature, open, industry standard language for the description of data structures that has become widely adapted for data exchange between independent systems. In addition, there are numerous technologies related to XML that are relevant to the SWIM architecture development. A detailed discussion of XML and its possible application to SWIM may be found in Appendix K of the CNS-ATM Task 15 Report.

Appendix F. List of Abbreviations and Acronyms

	AFSS
	Automated Flight Service Station

	ARTCC
	Air Route Traffic Control Center

	API
	Application Program Interface

	ASD
	Office of System Architecture and Investment Analysis

	ATCSCC
	Air Traffic Control System Command Center

	ATCT
	Traffic Control Tower

	ATM
	Air Traffic Management

	CNS
	Communications, Navigation and Surveillance

	CONOPS
	NAS Concept of Operations

	CONUSE
	Concept of Use

	CORBA
	Common Object Request Broker Architecture

	COTS
	Commercial Off-The-Shelf

	DAA
	Designated Approving Authority

	DCE
	Distributed Computing Environment

	DNM
	Distributed Network Management

	DOM
	Document Object Model

	DOS
	Denial of Service

	DCOM
	(Distributed Component Object Model

	ebXML
	Electronic Business eXtensible Markup Language

	EJB
	Eterprise Java Bean

	FAA
	Federal Aviation Administration

	FOC
	Flight Operations Center

	FTI
	FAA Telecommunication Infrastructure

	GIOP
	General Inter- Object Request Broker Protocol (GIOP)

	GIS
	Geographical Information System

	HTML
	Hyper Text Markup Language

	IDL
	Interface Definition Language

	IDS
	Intrusion Detection Systems

	IETF
	Internet Engineering Task Force

	IIOP
	Internet Inter-ORB Protocol

	IO
	Information Object

	IOR
	Information Object Repository

	IPP
	Integrated Program Plan

	IPT
	Integrated Product Team

	IRD
	Interface Requirement Document

	ISO
	International Organization for Standardization

	ISS
	Information System Security

	ISSA
	Information System Security Architecture

	IT
	Information Technology

	ITT-AES
	ITT Industries Advanced Engineering and Sciences

	J2EE
	Java 2 Platform, Enterprise Edition

	J2SE
	Java 2 Platform, Standard Edition

	JDK
	Java Development Kit

	LMDR
	Local MetaData Registry

	MDR
	MetaData Registry

	MIB
	Management Information Base

	MNS
	Mission Needs Statement

	NAS
	National Airspace System

	NASCR
	NAS Common Reference

	NASR
	NAS Resources

	NIMS
	NAS Infrastructure Management System

	NOTAM
	NOtice To AirMen

	NWIS
	NAS-Wide Information Services

	OO
	Object Oriented

	OODBMS
	Object Oriented Database Management System

	ONC
	Open Network Computing

	OQL
	Object Query Language

	ORB
	Object Request Broker

	ORDBMS
	Object-Relational Database Management System

	OSED
	Operational Services and Environmental Description

	OSF
	Open Software Foundation

	PKI
	Public Key Infrastructure

	PP
	Protection Profile

	QoS
	Quality of Service

	RM-ODP
	Reference Model of Open Distributed Processing

	RPC
	Remote Procedure Call

	RT CORBA
	Real-Time CORBA

	SCAP
	Security Certification and Authorization Package

	SE
	System Engineering

	SEM
	System Engineering Manual

	SNMP
	Simple Network Management Protocol

	SPIO
	Stream Data Publishing Information Object

	SQL
	Structured Query Language

	STA
	Security Technology Assessment

	SWIM
	System Wide Information Management

	TRACON
	Terminal Radar Approach CONtrol facility

	TCP
	Transmission Control Protocol

	VC
	Virtual Connection

	VPN
	Virtual Private Network

	W3C
	World Wide Web Consortium

	XML
	eXtensible Markup Language

	XSL
	eXtensible Stylesheet Language family

	XSLT
	eXtensible Stylesheet Language Transformations

� In the context of this report, “CNS-ATM” refers to ITT Industries’ contract (DTFA01-97-C-00062) supporting FAA ASD-100.

� NAS-Wide Information Services (NWIS) Architecture Development -CNS-ATM Task 15, ITT AES, TR03010, February 22, 2003.

� National Airspace System - System Engineering Manual, Federal Aviation Administration, ASD-100 Architecture and System Engineering, Version 2.1, November 13, 2003.

� Ibid. p. 1-1.

� Ibid., p. 4.1-1.

� Ibid., p. 4.5-3.

� Ibid., p. 4.5-8.

� NAS-Wide Information Services (NWIS)/ System-Wide Information Management (SWIM) Architecture and Requirements - CNS-ATM Task 17A: Functional Architecture, ITT AES, TR03091, July 29, 2003.

� NAS-Wide Information Services (NWIS)/ System-Wide Information Management (SWIM) Architecture and Requirements - CNS-ATM Task 17B: NAS-Level Requirements Development, ITT AES, TR03103, September 8, 2003.

� NAS SEM, p. 4.5-1.

� NAS SEM, p. 4.5-7.

� Current FAA Telecommunications System and Facility Description Manual, Currant Book; Fiscal Year 2002 Edition, NAS Operations (AOP) Telecommunications Support and International Communications Division.

� Future FAA Telecommunications Plan, “Fuschia Book”, NAS Operations (AOP) Telecommunications Network Planning and Engineering Division, April 2003.

� CNS-ATM Task 15 Report, pp. 4-8 to 4-9.

� In this instance, Information Management (IM) also includes “Network Management (NM),” functions, though IM and NM are considered separately in the Task 17 functional analysis/physical architecture development to be in accordance with network standards. See Section � REF _Ref62232489 \r \h ��3.1.2.2�.

� CNS-ATM Task 15 Report, pp. 4-8 to 4-9.

� Derived from Draft International Standard ISO/DIS 19119: Geographic information – Services, p. 4.

� Ibid, p. 22.

� The NAS Concept of Operations (p.16) specifies that a: “common Geographical Information System (GIS) format is used to store all NAS information including terrain, obstacle, weather, and navigation, surveillance and communications coverage information.” Therefore a GIS-based model is a good starting point.

� Draft International Standard ISO/DIS 19119, p. 23

� Ibid, p. 35.

� CNS-ATM Task 15 report, Revised version of Table 5-1, p. 5-3.

� This Task 15 representation of SWIM was derived in part from material in: Joint Battlespace Information (JBI) Presentation; Opportunities for Experimentation, DASADA Kickoff Meeting, Jim Milligan, 12 Sep 2000.

� CNS-ATM Task 15 Report, slightly modified Figure 5-3, p. 5-6.

� A functional architecture is not a unique product. Rather, the same system can be described using alternative functional decompositions. The selected functional architecture should be one that provides a comprehensive and complete understanding of the problem space, provides insight into how functions inter-relate and how data is passed, and supports logical organization of functionality into components to improve synthesis of design, innovation and integration.

� � HYPERLINK "http://www.iso.ch/iso/en/ittf/PubliclyAvailableStandards/s014258e.zip" �ISO/IEC 7498-4:1989� - Information processing systems -- Open Systems Interconnection -- Basic Reference Model -- Part 4: Management framework - 1st edition

� NAS System Engineering Manual, p. B-6.

� A complete understanding of the defined functional components may be required to fully understand the identified technologies associated with each SWIM function. Refer to the SWIM functional analysis for a detailed description of each SWIM function.

� “The IULS Approach to Software Wrapper Technology for Upgrading Legacy Systems”, David Corman, CROSSTALK, Dec. 2001

� Ibid.

� IBM, Cisco Promote "Self-Healing" Network Standards By � HYPERLINK "mailto:caron_carlson@ziffdavis.com" �Caron Carlson�, eWeek, October 10, 2003

� Task 15 Report; this combines Table 6-1 on pp. 6-2 and 6-3, and Table 6-2 on p. 6-4.

� Ibid., Figure 6-1, p. 6-5.

� Though a single architecture concept was recommended in Task 15, there are enough variations in the design of this architecture to provide the alternative physical architecture solutions presented in this Task 17 iteration of the Synthesis process.

� Ibid. Derived from Appendix E figures.

� Event is a pre-defined piece of information or condition such that its presence will trigger a corresponding SWIM action to be taken.

� NAS SEM, p. 4.5-13.

� U.S. Department of Transportation Federal Aviation Administration Order 1375.1C, Subject: Data Management

� The Committee on Institutional Cooperation, established in 1958, is the academic consortium of � HYPERLINK "http://www.cic.uiuc.edu/CICUniversities.shtml" �twelve major teaching and research universities� in the Midwest. Its programs and activities extend to all aspects of university activity except intercollegiate athletics. The CIC headquarters office is located at the University of Illinois at Urbana-Champaign. � HYPERLINK "http://www.cic.uiuc.edu/" ��http://www.cic.uiuc.edu/�

� This example is derived from an XML example provided by Josh Hung, FAA ASD-120.

� This example is derived from paper "Achieving Expressiveness and Scalability in an Internet-Scale Event Notification Service," A. Carzaniga, � HYPERLINK "http://www.ics.uci.edu/~dsr/" �D.S. Rosenblum�, and � HYPERLINK "http://www.cs.colorado.edu/~alw/" �A.L. Wolf�, Nineteenth ACM Symposium on Principles of Distributed Computing (PODC2000), Portland, Oregon. July, 2000

� SQL (Structured Query Language) is a standard interactive and programming language for getting information from and updating a � HYPERLINK "http://searchDatabase.techtarget.com/sDefinition/0,,sid13_gci211895,00.html" �database�.

� Carzaniga et al, Design and Evaluation of a Wide-Area Event Notification Service, p. 345

� Ibid

� Acyclic graph definition: A graph with no path that starts and ends at the same vertex and repeats no other vertex., from the NIST Dictionary of Algorithms and Data Structures, http://www.nist.gov/dads/

� “Manage Distributed Systems with Smart Subscriptions”, R. E. Filman, D.E. Lee,

� “Interfaces and Algorithms for a Wide-Area Event Notification Service”, A. Carzaniga in � HYPERLINK "http://www.ics.uci.edu/~dsr/" �D.S. Rosenblum�, and � HYPERLINK "http://www.cs.colorao.edu/~alw/" �A.L. Wolf� , Technical Report CU-CS-888-99, Department of Computer Science, University of Colorado, October, 1999

� In CNS-ATM Task 11, three broad categories of FAA nodes were considered for application of the campus area network development approach. These included:

Nodes with TRACONs or Towers.

ARTCCs.

Nodes comprising remote FAA equipment and facilities.

� These categories correspond to the information categories identified in CNS-ATM Task 15.

� Architectures for an Event Notification Service Scalable to Wide-Area Networks”, A. Carzaniga ,PhD Thesis. Politecnico di Milano. December, 1998

� A. Carzaniga and A. Wolf, Content-Based Networking: A New Communication Infrastructure, University of Colorado, 2002.

� An Efficient Multicast Protocol for Content-Based Publish-Subscribe Systems,; IBM T. J. Watson Research Center, c1999.

� Ibid.

� Antonio Carzaniga, David S. Rosenblum, and Alexander Wolf, Challenges for Distributed Event Services: Scalability vs. Expressiveness, c1999.

� Ibid.

� Slightly modified version of Table 7 in Design and Evaluation of a Wide-Area Event Notification Service, ACM Transactions on Computer Systems, Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf, Vol. 19, No. 3, August 2001, Page 377.

� � HYPERLINK "http://www.ietf.org/rfc/rfc2574.txt" �RFC 2574� - User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3), Draft Standard, April 1999.

� Discussion in this section and Appendix C tables referenced these following documents:

Nichols, Randall K., Daniel J. Ryan, & Julie J.C.H. Ryan. Defending Your Digital Assets Against jackers, Crackers, Spies & Thieves. New York: McGraw Hill, 2000

Federal Aviation Administration, “Information Systems Security Program Handbook”, Version 2.0, March 2001.

Krutz, Ronald L. and Vines, Russel Deans. The CISSP Prep Guide: Mastering the Ten Domains of Computer Security. New York: Wiley, 2001.

Department of Navy, “Information Technology Standards Guidance”, Version 99-1, 1999.

Federal Aviation Administration, “INFORMATION SYSTEM SECURITY TECHNOLOGY OVERVIEW, The MITRE Corporation forthe Office of Information Services , Version 2.0, September 30, 2002.

� The SCAP is a document presented to the DAA for final authorization of the system. The SCAP includes the ISS plan, vulnerability assessment report, risk assessment, security test plan and security test results, disaster recovery and contingency measures, and ISS certification and authorization statements. Per 1370.82, a Protection Profile is also included in the SCAP. A protection profile is a combination of security requirements, including assurance and functional requirements, with the associated rationale and target environment to meet identified security needs. Each NAS protection profile is to be tailored from protection profiles published by NIST or NSA or under Common Criteria MRA with either agency.

� FAA NAS System Protection Profile Template, Ver. 1.0, March 11, 2002. Prepared by The Mitre Corporation for the FAA Office of the Information Services.

� This order establishes policy and assigns organizational and management responsibilities to ensure implementation of the Computer Security Act of 1987; Office of Management and Budget (OMB) Circular A-130, Management of Federal Information Resources; Department of Transportation (DOT) Handbook, DOT H 1350.2, Departmental Information Resources Management Manual (DIRMM); and Presidential Decision Directive 63 (PDD 63).

� FAA NAS System Protection Profile Template, version 1.0, March 2002, prepared by MITRE Corporation

� “Patterns, Frameworks, & Middleware: Their Synergistic Relationships”, Douglas C. Schmidt, Vanderbilt University, Nashville, Tennessee

� API: Application Program Interface, is the specific method prescribed by a computer � HYPERLINK "http://WhatIs.techtarget.com/definition/0,,sid9_gci212714,00.html" �operating system� or by an � HYPERLINK "http://searchWebServices.techtarget.com/sDefinition/0,,sid26_gci507192,00.html" �application program� by which a programmer writing an application program can make requests of the operating system or another application

� Everything You Need To Know About Middleware: A Guide to Selection a Real-Time Infrastructure. Talarian Corporation, 5 December 2000, � HYPERLINK "http://www.talarian.com/industry/middleware/whitepaper.shtml" ��http://www.talarian.com/industry/middleware/whitepaper.shtml�> (19 October 2002)

� Middleware Whitepaper, Hal McIntyre, August 1, 2000, http://64.33.34.189/library/middleware.shtml

� http://www.whatis.com

� http://www.whatis.com

� http://www.comptechdoc.org/independent/database/basicdb/dataobject.html

� http://www.acm.org/crossroads/xrds7-3/ordbms.html

� View W3C’s technical reports page on the internet for more information. http://www.w3.org/Metadata/

� http://www.onc-rpc-xdr.com/

� http://www.cs.umbc.edu/kqml/toolTalk/toolTalk.html

PAGE
2/9/2004
vii
TR04008

